Utilisation of Cassava Starch Edible Films containing Salicylic Acid on Papaya (Carica papaya L.) Preservation

Castro, Marlon1; Mantuano, María-Isabel1; Coloma, José-Luis1; Santacruz, Stalin1

1Universidad Laica Eloy Alfaro de Manabí, Avenida Circunvalación s/n, Manta, Ecuador. P.O. Box 13-05-2732

Abstract: In the present work papaya coated with edible films based either on chitosan or cassava starch was investigated. Film forming solutions were prepared with either 1 % (w/v) chitosan or 0,5 % (w/v) cassava starch. Salicylic acid (2 mmol/L) or a mixture of thymol (0,5 % w/v) and cinnamaldehyde (0,5 % w/v) were added to the starch film forming solution. Papayas were stored for 28 days at 11 °C and relative humidity (RH) between 70 and 80 %, followed by a maturation step of 4 days at 25 °C and 60 % RH. Papayas were analysed on weight loss, firmness, soluble solids, acidity, maturity index and disease severity every week. Uncoated papayas showed slight differences on weight loss compared to coated samples up to the third week of storage. No differences between acidity and soluble solids were found among the samples along the whole storage time. Uncoated samples showed a higher maturity index after the first week compared to coated samples whereas no difference was observed among coated papayas along the whole storage time. Uncoated samples showed a higher disease severity than samples coated with chitosan or salicylic acid up to the third week of storage, afterwards, the three samples showed similar results. The use of films based on cassava starch together with salicylic acid is a promising tool to preserve Hawaii papaya at refrigeration conditions.

Keywords: papaya, edible film, cassava starch, salicylic acid.

Utilización de Películas Comestibles de Almidón de Yuca y Ácido Salicílico en la Conservación de Papaya (Carica papaya L.)

Resumen: En el presente trabajo se estudió recubrimientos comestibles a base de quitosano y almidón de yuca en papaya. Soluciones de recubrimiento se prepararon con 1% (w / v) quitosano o 0,5% (w / v) de almidón de yuca. El ácido salicílico (2 mmol / L) o una mezcla de timol (0,5% w / v) y cinamaldehído (0,5% w / v) se añadieron a la solución formadora de película de almidón. Papayas se almacenaron durante 28 días a 11 ° C y la humedad relativa (RH) entre 70 y 80%, seguido de una etapa de maduración de 4 días a 25 ° C y 60% RH. Las papayas fueron analizadas en la pérdida de peso, firmeza, sólidos solubles, acidez, índice de madurez y la gravedad de la enfermedad cada semana. Papayas no recubiertas mostraron pequeñas diferencias en la pérdida de peso en comparación con muestras recubiertas hasta la tercera semana de almacenamiento. No se encontraron diferencias entre la acidez y sólidos solubles entre las muestras a lo largo de todo el tiempo de almacenamiento. Muestras no recubiertas mostraron un índice de madurez superior después de la primera semana en comparación con las muestras recubiertas, mientras que no se observó diferencia entre papayas revestidas a lo largo de todo el tiempo de almacenamiento. Muestras no recubiertas mostraron una gravedad de la enfermedad mayor que las muestras recubiertas con quitosano o ácido salicílico hasta la tercera semana de almacenamiento, después, las tres muestras mostraron resultados similares. El uso de películas a base de almidón de yuca junto con el ácido salicílico es una herramienta prometedora para preservar papaya Hawaiana en condiciones de refrigeración.

Palabras claves: papaya, película comestible, almidón de yuca, ácido salicílico.

Descargar PDF

REFERENCES

  • Abdou, E., Nagy, K., Elsabee, M. (2007). Edible films from essential-oil-loadednanoemulsions:Physico-chemicalcharacterization and antimicrobial properties. Bioresour. Technol. 99, 1359–1367.
  • Acevedo-Fani, A., Salvia-Trujillo, L., Rojas-Graü, M., Martín-Belloso, O. (2015). Edible films from essential-oil- loaded nanoemulsions: Physico chemical characterization and antimicrobial properties. Food Hydrocolloids 47, 168-177.
  • Ahmad, M., Benjakul, S., Prodpran, T., Agustini, T. (2012). Physico-mechanical and antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with essential oils. Food Hydrocolloids 28, 189-199.
  • AOAC. (1990). Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists Washington DC.
  • Asghari, M., Hajitagilo, R., Shirzad, H. (2007). Postharvest treatment of salicylic acid effectively controls pear fruit diseases and disorders during cold storage. In: Proceedings of the International Congress on Novel Approaches for the Control of Postharvest Diseases and Disorders. COST action 924, 355-360.
  • Asghari, R., Hajitagilo, R., Jalilimarandi, R. (2009). Postharvest application of salicylic acid before coating with chitosan affects the pattern of quality changes in table grape during cold storage. In: 6th International Postharvest Symposium, Antalya, Turkey.
  • Babalar, M., Asghari, M., Talaei, A., Khosroshahi, A. (2007). Effect of pre- and postharvest salicylic acid treatment on ethylene production, fungal decay and overall quality of Selva strawberry fruit. Food Chemistry 105, 449-453.
  • Bezerra de Aquino, A., Fitzgerald, A., Lins de Aquino, L. (2015). Impact of edible chitosan–cassava starch coatings enriched with LippiagracilisSchauer genotype mixtures on the shelf life of guavas (Psidiumguajava L.) during storage at room temperature. Food Chemistry 171, 108–116.
  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in food. A review. International Journal of Food Microbiology 94, 223-253.
  • Chiumarelli, M., Pereira, L., Ferrari, C., Sarantópoulos, C. (2010). Cassava starch coating and citric acid to preserve quality. Journal of Food Science 75, 297-304.
  • Chiumarelli, M., Hubinger, M. (2012). Stability, solubility, mechanical and barrier properties of cassava starch-Carnauba wax edible coatings to preserve fresh-cut apples. Food Hydrocolloids 28, 59-67.
  • Cia, P., Pascholati, S., Benato, E. (2007). Indução de resistência no manejo de doençaspóscolheita. P.245-280. In: Rodrigues, F., Romeiro, R. (Eds.), Indução de resistênciaem plantas a patógenos. Viçosa: UFV, pp. 245-280.
  • Chinou, I., Liolios, C., Gortzi, O., Lalas, S., Tsaknis, J. (2009). Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanumdictamnus L. and in vitro antimicrobial activity. Food Chem. 112, 77–83.
  • Chivrac, F., Angellier-Coussy, H., Guillard, V., Pollet, E., Avérous, L. (2010). How does water diffuse in starch/montmorillonite nano-biocompositematerials. Carbohydrate Polymers 82, 128-135.
  • De Souza, A., Dias, A., Sousa, H. Tadini, C. (2014). Impregnation of cinnamaldehyde into cassava starch biocomposite films using supercritical fluid technology for the development of food active packaging. Carbohydrate Polymers, 102, 830–837.
  • Durango, A., Soares, N. Andrade, N. (2006). Microbiological evaluation of an edible antimicrobial coating on minimally processed carrots. Food Control 17, 336–341.
  • El-Mougy. (2002). In vitro Studies on Antimicrobial Activity of Salicylic Acid and Acetylsalicylic Acid as pesticidal Alternatives Against some Soilborne Plant Pathogens. Egypt Journal Phytophathology 30, 41-55.
  • Kessmann, H., Staub, T., Hofmann, C., Maetzke, T., Herzog, J. (1994). Induction of systemic acquired disease resistance in plants by chemicals. Annual Review of Phytopathology 32, 439-59.
  • Lechaudel, M., Uan L., Joas, J. (2010). Chlorophyll fluorescence, a nondestructive method to assess maturity of mango fruits (Cv. ‘Cogshall’) without growth conditions bias. J. Agric Food Chem. 14, 7532–7538.
  • Mastromatteo, M., Barbuzzi, G., Conte, A. (2009). Controlled release of thymol from zein based film. Innovative Food Science & Emerging Technologies 10, 222-227.
  • Meng, X., Li, B., Liu, J., Tian, S. (2008). Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage. Food Chem. 106, 501-508.
  • OECD/Food and Agriculture Organization of the United Nations (2015), OECD-FAO Agricultural Outlook 2015, OECD Publishing, Paris.
  • Pan, K., Chen, H., Davidson, P., Zhong, Q. (2014). Thymol nanoencapsulated by sodium caseinate: physical and anti-listerial properties. J. Agric. Food Chem. 62, 1649–1657.
  • Pauli, A., H. Schilcher. (2010). In vitroantimicrobial activities of essential oils monographed in the European Pharmacopoeia, in: Baser, K., Buchbauer, G. (Eds.), Handbook of Essential Oils – Science, Technology, and Applications. CRC Press, Boca Raton, FL, pp. 353-548.
  • Qin, Q. Z., Tian, S., Xu, Y., Wan, Y. (2003). Enhancement of biocontrol efficacy of antagonistic yeasts by salicylic acid in sweet cherry fruit. Physiological and Molecular Plant Pathology 62, 147-154.
  • Raskin, I. (1992). Role of salicylic acid in plants. Annual Review of Plant Physiology and Plant Molecular Biology 43, 439-463.
  • Raybaudi, R., Mosqueda, J., Martín, O. (2006). Antimicrobial activity of essential oils on Salmonella Enteritidis, Escherichia coli, and Listeria innocua in fruit juices. Journal of Food Protection 69, 1579 - 1586.
  • Ribeiro, C., Vicente, A., Teixeira, J., Miranda, C. (2007). Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biology and Technology 44, 63–70.
  • Ruiz, S., Guevara, C., Estrada, I., Cira, L., Gassós, L., Llanez, A. (2010). Aplicación de películas comestibles a base de quitosano y almidón para mantener la calidad sensorial y microbiológica de melón fresco cortado. Revista Internacional de Ciencia y Tecnología Biomédica 1, 1-10.
  • Sanchez-Gonzalez, L., Pastor, C., Vargas, M., Chiralt, A., Gonzalez-Martinez, C. and Chafer, M. (2011). Effect of Hydroxypropylmethylcellulose and Chitosan Coatings with and without Bergamot Essential Oil on Quality and Safety of Coldstored Grapes. Postharvest Biol. Technol., 60: 57–63.
  • Santamaría, F., Basulto, E., Duch, S., Espadas, F., Gil, Díaz R., Larqué, A., Saavedra, J., (2009). Postharvest ripening and maturity indices for maradol papaya. Interciencia 34, 583- 588.
  • Shahidi, F., Arachchi, J. Jeon, Y. (1999). Food applications of chitin and chitosans. Trends in Food Science & Technology 10, 37-51.
  • Sivakumark, D.,Hewarathgamagae, R., Wijeratnam,W., Wijesundera W. (2002). Effect of ammonium carbonate and sodium bicarbonate on anthracnose of papaya. Phytoparasitica, 30, 486-492.
  • Souza, A., Benze, R., Ferrão, E., Ditchfield, C., Coelho, A., Tadini, C. (2012). Cassava starch biodegradable films: Influence of glycerol and clay nanopaticle content on tensile and barrier properties and glass transition temperature. LWT - Food Science and Technology 46, 110-117.
  • Srivastava, M., Dwivedi, U. N. (2000). Delayed ripening of banana fruit by salicylic acid. Plant Science 158, 87-96.
  • Vargas, M., C. Pastor, A. Chiralt, D. J. McClements y C. González-Martínez. (2008). Recent advances in edible coatings for fresh and minimally processed fruits. Critical Reviews in Food Science and Nutrition 48(6): 496-511.
  • Wolucka, B., Goossens, A., Inze, D. (2005). Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. J. Exp. Bot. 56, 2527–2538.
  • Yao, H., Tian, S. (2005). Effects of pre- and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biology and Technology 35, 253-262.
  • Zhang, Y., Zhang, M., Yang, H. (2015). Postharvest chitosan-g-salicylic acid application alleviates chilling injury and preserves cucumber fruit quality during cold storage. Food Chemistry 174, 558-563