Medición de Ángulos de Inclinación por Medio de Fusión Sensorial Aplicando Filtro de Kalman

##plugins.themes.bootstrap3.article.main##

David Pozo

Nelson Sotomayor

Jorge Rosero

Luis Morales



Resumen

Con el fin de obtener medidas angulares con el mínimo error y desviación posible se establece la fusión sensorial mediante el uso del Filtro de Kalman de las señales del acelerómetro y el giroscopio para un sistema en reposo sometido a perturbaciones (vibraciones). Finalmente el algoritmo es implementado en una plataforma que se basa en un microcontrolador dsPIC30F4011 que permite medir ángulos de inclinación en cabeceo y alabeo. Además en este documento se presenta una metodología que permite entender el manejo de los sensores inerciales (acelerómetro y giroscopio), así como también se da a  conocer sus principales características y los problemas inherentes a su funcionamiento.

Abstract:In order to obtain the minimum error and deviation of an angular measurement, is established sensory fusion using the Kalman Filter between the accelerometer and the gyroscope signals for a stationary system under disturbances (vibrations).Finally, the algorithm is implemented on a platform that is based on a microcontroller dsPIC30F4011 to measure angles in roll and pitch. Additionally, this paper presents a methodology that enables a better understanding of the management of inertial sensors (accelerometer and gyroscope) and also discloses its main characteristics and problems inherent in their operation.



Descargas

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Citas

Curey, R.K.; Ash, M.E.; Thielman, L.O.; Barker, C.H., "Proposed IEEE inertial systems terminology standard and other inertial sensor standards," Position Location and Navigation Symposium, 2004. PLANS 2004, vol., no., pp.83,90, 26-29 April. 2004.

M. Kraft, "Micromachined Inertial Sensors State of the Art and a Look into the Future", University of Southampton, Highfield, Southamptom, SO17 1BJ, 2000.

R. Feliz, E. Zalama, J. Gómez, G. Bermejo, "Pedestrian tracking using inertial sensors", Journal of Physical Agents, Vol. 3, No. 1, January 2009.

D. Roetenberg, H. Luinge, P. Slycke, "Xsens MVN: Full 6DOF Human Motion Tracking Using Miniature Inertial Sensors", XSENS TECHNOLOGIES, April 3, 2013.

D. Roetenberg, P. Slycke and Peter H. Veltink. "Ambulatory Position and Orientation Tracking Fusing Magnetic and Inertial Sensing", IEEE Trans. Biomedical Engineering, Vol. 54, No. 5, May. 2007.

H. Zhou, H. Hu, "Inertial sensors for motion detection of human upper limbs", Emerald Sensor Review, 2007.

H. Chao, C. Coopmans, L. Di and Y. Chen, " A comparative Evaluation of Low- Cost IMUs for Unmanned Autonomous Systems", IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, University of Utah, Sept. 2010.

F. Li, C. Zhao, G. Ding, j. Gong, C. Liu, F. Zhao, " Areliable and Accurate Indoor Localization Method using Phone Inertial Sensors", Microsoft Research Asia, Beijing, China, 2012.

M. Stuart, A. Friedland, C. Friendland, "A Survey of Unmanned Aerial Vehicle (UAV) Usage for Imagery Collection In Disaster Research And Management", Louisiana State university, 2011.

N. Yazdi, F. Ayazi and K. Najafi, "Micromachined Inertial Sensors", IEEE, Procedings, Vol. 86, No. 8, 1998.

Lucian T. Grigorie, Ruxandra M. Botez, "Modeling and Numerical Simulation of an Algorithm for the Inertial Sensors Errors Reduction and for the Increase of the Strapdown Navigator Redundancy degree in a Low Cost Architecture", Transactions of the Canadian Society for Mechanical Engineering, Vol. 34, No. 1, 2010.

Honghui Qi; Moore, J.B., "Direct Kalman filtering approach for GPS/INS integration," Aerospace and Electronic Systems, IEEE Transactions on , vol.38, no.2, pp.687,693, Apr 2002

Shaeffer, D.K., "MEMS inertial sensors: A tutorial overview," Communications Magazine, IEEE , vol.51, no.4, pp.100,109, April 2013.

Barbour, N.; Schmidt, G., "Inertial sensor technology trends," Sensors Journal, IEEE , vol.1, no.4, pp.332,339, Dec 2001

A. Manzanares del Moral, A. Luque, "Estudio de Modelos matemáticos de Acelerómetros Comerciales", Universidad de Sevilla, España, 2008.

Silicon Designs, Inc. Advanced Accelerometer Solutions, "Glossary", 2011,Disponible en: http://www.silicondesigns.com/glossary.html

MSY. SivaPrasad, PVR. Murthy, "Design Simulation &. Fabrication of Micromachined Acceleration Sensor", PhD. Dissertation, Dept. Mech. Eng., Jawaharlal Nehru Technological University.,Kukatpally, 2010.

A. Candelas, A. Corrales, "Giroscopios en el Sistema GypsyGyro-18"., Publicación interna No. 4., Grupo de Automática , Robótica y Visión Artificial, Universidad de Alicante, España, 2007.

Peter S. Maybeck., "Chapter 1: Stochastic models, estimation, and control", Volume 1. Department of electrical engineering air force institute of technology Wright-Patterson air force base, OHIO, 1979.

G. Welch, G. Bishop., "An Introduction to the Kalman Filter", Department of computer Science, University of North Carolina, Chapel Hill, EEUU., July, 2006.

A. Solera., "El Filtro de Kalman", Banco Central de Costa Rica, División Económica, Departamento de Investigaciones Económicas., Julio, 2003.

Begoña F. Aguado, Janelcy A. Castaño, Eduardo Z. Casanova, Jaime G. García-Bermejo., "Diseño y Simulación de un Filtro Kalman para un Robot Móvil"., XXV Jornadas de Automática, Ciudad Real., Septiembre, 2004.

Dual Axis Accelerometer Evaluation Board ADXL203EB, Analog Devices, Norwood, U.S.A., 2004.

Precision ± 1.7 g Single -/Dual - Axis iMEMS® Acelerometer ADXL103/ADXL203, Analog Devices, Norwood, U.S.A., 2006.

Integrated Dual-Axis Gyro IDG-300, InvenSense Inc., Santa Clara, U.S.A., 2006.

IDG - 300 Dual - Axis Gyroscope Evaluation Board Specification, InvenSense Inc., Santa Clara, U.S.A., 2007.