Sobre la simulación de la dinámica de electrones en el aire bajo la acción de un campo eléctrico

##plugins.themes.bootstrap3.article.main##

Mario Egas

Nelson Medina

Marco Bayas



Resumen

Resumen.-En este trabajo se discuten las consideraciones teóricas necesarias para describir la dinámica de electrones en un gas bajo la acción de un campo eléctrico. El punto central de la discusión es el papel de las colisiones de los electrones con las moléculas del medio en su trayectoria final.  En primer lugar, desde un análisis semi-clásico, se aborda el problema de calcular la probabilidad del siguiente choque. En segundo lugar, se desarrolla el modelo para el cálculo de las secciones eficaces.  Sobre la base a estos resultados, se plantea el método para definir aleatoriamente las condiciones de los choques. El movimiento entre choques se evalúa con el método de la dinámica molecular. Como resultado, se plantean las condiciones para poder simular la trayectoria de electrones en el aire.

 

Abstract.- The theoretical considerations needed to computationally simulate the dynamics of electronswithin a gas under the influence of an external electric field are discussed. The main point of the discussion is the effect of the collisions between electrons and gas molecules in the electronic trajectory. First, the probability of the next collision is analyzed from a semi-classical point of view. Then a model for the cross section calculation is developed. Both the probability of the next collision and the cross section are necessary to define stochastically the conditions of a collision in a computer simulation. The movement of an electron between collisions can be described with the method of molecular dynamics.With these considerations the trajectory of electrons in gases such as air can be simulated.

Descargas

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Citas

Hundsdorfer Willem Li Chao, Ebert Ute. Spatially hybrid computations for streamer discharges: II fully 3D simulations. Plasma Physics, Arxiv, 2011.

C. Li; C. K¨ohn; U. Ebert. Modeling hard radiation from streamers and leaders and terrestrial gammaray flashes. 30 ICPIG, 2011.

V. A. ; Townsend J. S. Bailey. The motion of electrons in gases. Phylosophical Magazine S.6, 42:873-891, 1921.

C´elestin Seb´astien. Study of the dynamics of streamers in air at atmospheric pressure. PhD thesis, ´Ecole Centrale de Par´ıs, Par´ıs, 2008.

O. Chanrion; T. Neubert. A PIC-MCC code for simulation of streamer propagation in air. Journal of Computational Physics, 227(1):7222-7245,Apr 2008.

Rakov V.; Rachidi F. Overview of recent progress in lightning research and lightning protection. IEEE, Transactions on Electromagnetic Compatibility,51, 2009.

Y. Tsuji; T. Tanaka; S. Yonemura. Cluster patterns in circulating fluidized beds predicted by numerical simulation(discrete particle model versus two fluid model). Powder Technology, 95(1):254-264, 1998.

Birdsall C. K. Particle in cell charged particle simulation plus Montecarlo Collisions with neutral atoms, PIC-MCC. IEEE Transaction on Plasma Science, 19(2):123, 1991.

A. Bogaerts; M. V. Straaten; R. Gijbels. Monte Carlo simulation of an analytical glow discharge: motion of electrons, ions and fast neutrals in the cathode dark space. Spectrochimica Acta, 50B(2):179-196, 1995.

Lifshitz Landau. Teoria Cu´antica No Relativista, volume 3. Revert´e S. A, Espa ˜na, 2a edition, 1983.

Starikovskaia S.M. and Starikovskii Yu. Numerical modelling of the electron energy distribution function in the electric field of a nanosecond pulsed discharge. Journal of Physics D: Applied Physics, 2001.

T M P Briels; W Hundsdorfer; B Meulenbroek; A Rocco; E M van Veldhuizen U Ebert; C Montijn;The multiscale nature of streamers. physics.plasmph, Apr 2006.

Mermin N. D. Ashcroft N. Physics. Cornell University, New York, U.S.A., 1975.

Guti´errez Gonzalo. Elementos de Simulación Computacional, chapter 3, 4, pages 7-9. Universidad de Santiago de Chile, Departamento de F´ısica, 2001.

Smith Berend Frenkel Daan. Understanding Molecular Simulation. Academic Press, 1996.

Itikawa; Ichimura; Sakimoto; Takayanagi. Secciones eficaces de colisi ´on electrones y fotones- Oxígeno electrones- Nitrógeno. Journal of Physical Chemistry, 18(1):1-2, 1989.

Yukikasu Itikawa. Cross sections for electron collisions with Nitrogen molecules. Journal Physical Chemistry, Ref Data, 35(1):31-53, Dec 2006.

Michael J. Brunger; Stephen J.Buckman. Electron molecule scattering cross sections I experimental techniques and data for diatomic molecules. Physics Reports, 357(1):215-458, 2002.

O. Chanrion; T. Neubert. Production of runaway electrons by negative streamer discharges. Journal of Geophysical Research, 115(A00E32):1-10, Jun 2010.

K.L.Cartwright;J.P.Verboncoeur;C.K.Birdsall. Loading and injection of maxwellian distributions in particle simulations. Journal of Computational Physics, 1(162):483-513,May 2000.

Giovanni Lapenta. The algorithms of the implicit method. Physics.Comp-Ph, Jan 2008.

P. A. Kazaks, P. S. Ganas, and A. E. S. Green.Electron-impact excitation and ionization of atomic Oxygen. Phys. Rev. A, 6:2169-2180, Dec 1972.

A. Okhrimovsky; A. Bogaerts; R. Gijbels. Electron anisotropic scattering in gases:A formula forMonte Carlo simulations. Physical Review E, 65(037402):1-4, Feb 2002.