Monitoreo de la Estabilidad de Voltaje de Corredores de Transmisión en Tiempo Real a partir de Mediciones Sincrofasoriales

##plugins.themes.bootstrap3.article.main##

Jaime Cristóbal Cepeda

Pablo Xavier Verdugo

Gabriel Alberto Argüello



Resumen

La determinación de las curvas Potencia-Voltaje (P-V) y de la capacidad de transferencia disponible son las herramientas más utilizadas para analizar la estabilidad de voltaje en los sistemas de potencia. Con el desarrollo de la tecnología de medición sincrofasorial, nuevas herramientas de monitoreo de estabilidad de voltaje en tiempo real han sido desarrolladas. Una de las herramientas más promisorias es la técnica del Equivalente Thévenin, la cual permite calcular la proximidad entre el estado operativo actual y el colapso de voltaje a través de la determinación de la curva P-V en tiempo real. Este método está siendo empleado principalmente para monitorear la estabilidad de corredores de transmisión puesto que permite determinar la robustez relativa del sistema de transmisión respecto de las barras de carga. Este artículo presenta una descripción conceptual del método del Equivalente Thévenin para monitoreo de la estabilidad de voltaje de corredores de transmisión a partir de mediciones sincrofasoriales. Se presenta adicionalmente la herramienta de monitoreo en tiempo real que dispone el CENACE y se describe una propuesta metodológica para determinar los límites de transferencia de potencia por los corredores monitoreados. Estos límites servirán como base referencial para evaluar la estabilidad de voltaje en tiempo real.

Computation of Power-Voltage (P-V) curves and the corresponding available transfer capability are the most commonly used tools to analyze the power system voltage stability. The emerging synchronized phasor measurement technology has allowed the development of novel methodologies to monitor the power system voltage stability in real time. One of the most promissory techniques is the so-called Thevenin Equivalent method, which allows computing the proximity of the actual operational state to the voltage collapse via the determination of the P-V curve in real time. This tool is being mainly used for monitoring the voltage stability of transmission corridors since it permits determining the power system relative strength in regards to the load buses. One of the main challenges of real-time monitoring is to determine adequate early-warning indicators. In this connection, this paper proposes a methodology for determining the voltage profile power transfer limits of the monitored transmission corridors. These transfer limits are the referential framework for assessing the voltage stability in real time, and constitute the early-warning indicators.


 

Descargas

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografías de los autores/as

Jaime Cristóbal Cepeda, Corporación Centro Nacional de Control de Energía

Jefe de Investigación y Desarrollo

Pablo Xavier Verdugo, Corporación Centro Nacional de Control de Energía

Ingeniero de Planeamiento

Gabriel Alberto Argüello, Corporación Centro Nacional de Control de Energía

Director Ejecutivo

Citas

M. Amin, "Toward Self-Healing Infrastructure Systems", Electric Power Research Institute (EPRI), IEEE, 2000.

U. Kerin, G Bizjak, E. Lerch, O. Ruhle, and R. Krebs, "Faster than Real Time: Dynamic Security Assessment for Foresighted Control Actions", 2009 IEEE Bucharest Power Tech Conference, June 28th - July 2nd, Bucharest, Romania.

C. Martinez, M. Parashar, J. Dyer, and J. Coroas, "Phasor Data Requirements for Real Time Wide-Area Monitoring, Control and Protection Applications", CERTS/EPG, White Paper - Final Draft, for: EIPP - Real Time Task Team, January, 2005.

W. Nakawiro, I. Erlich, "Online Voltage Stability Monitoring using Artificial Neural Network", Electric Utility Deregulation and Restructuring and Power Technologies, 2008., pp. 941 - 947, Nanjing, China, April, 2008.

S. Torres, "Evaluación de la Estabilidad de Tensión usando modelos Neuro Difusos", Tesis Doctoral, Universidad Nacional de San Juan, Argentina, Diciembre de 2008, ISBN 978-987-05-4900-0.

K. Vu, M. Begovic, D. Novosel, M. Saha, "Use of Local Measurements to Estimate Voltage-Stability Margin", 20th International Conference on Power Industry Computer Applications, pp. 318 - 323, May 1997.

M. Haque, "On-line monitoring of maximum permissible loading of a power system within voltage stability limits", IEE Proceedings online no. 20020682, IEE Proc.-Gener. Transm. Distrib., Vol. 150, No. 1, pp. 107 - 112, January 2003.

H. Sangwook, B. Lee, S. Kim, Y. Moon, "Development of voltage stability index using synchro-phasor based data", Transmission & Distribution Conference & Exposition: Asia and Pacific, pp. 1 - 4, October 2009.

D. Niu, Z. Liu, H. Yang, "PMU Configuration Scheme of Regional Power System and Dynamic Voltage Stability Online Evaluation of Substation", Power and Energy Engineering Conference (APPEEC), 2010 Asia-Pacific, pp. 1 - 5, Chengdu, March 2010.

M. Larsson , C. Rehtanz, J. Bertsch, "Monitoring and operation of transmission corridors", Corp. Res., ABB Switzerland Ltd., Switzerland, IEEE Power Tech Conference Proceedings, Bologna, pp. 8, Vol.3, 2003.

M. Liu, B. Zhang, L. Yao, M. Han, H. Sun, W. Wu, "PMU based voltage stability analysis for transmission corridors", Technol. Center, AREVA T&D, Stafford, Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, pp. 1815 - 1820, Nanjuing, April 2008.

M. Nizam, A. Mohamed, A. Hussain, "Dynamic Voltage Collapse Prediction In Power Systems Using Power Transfer Stability Index", First International Power and Energy Coference PECon 2006, pp. 246 - 250, Putrajaya, Malaysia, November 2006.

A. G. Phadke, "Synchronized phasor measurements in power systems", IEEE Computer Applications in Power, vol.6, no.2, pp.10-15, April 1993.

A. Phadke, and J. Thorp, Synchronized Phasor Measurements and Their Applications, Virginia Polytechnic Institute and State University, Springer Science + Business Media, 2008, ISBN 978-0-387-76535-8.

IEEE Power Engineering Society, "IEEE Standard for Synchrophasors for Power Systems", IEEE Std. C37.118.1-2011, December 2011.

R. Cimadevilla, "Fundamentos de la Medición de Sincrofasores", ZIV P+C - España, XIII ERIAC, Décimo Tercer Encuentro Regional Iberoamricano de CIGRÉ, mayo de 2009, Puerto Iguazú, Argentina.

C. Martinez, M. Parashar, J. Dyer, and J. Coroas, "Phasor Data Requirements for Real Time Wide-Area Monitoring, Control and Protection Applications", CERTS/EPG, White Paper - Final Draft, for: EIPP - Real Time Task Team, January, 2005.

C. Juárez, and D. Colomé, "Tendencias en la Supervisión en Tiempo Real de la Estabilidad de Pequeña Señal de Sistemas de Potencia", Universidad Nacional de San Juan, XIII ERIAC, mayo de 2009, Puerto Iguazú, Argentina.

S. C. Savulescu, et al, "Real-Time Stability Assessment in Modern Power System Control Centers", IEEE Press Series on Power Engineering, Mohamed E. El-Hawary, Series Editor, a John Wiley & Sons, Inc., Publication, 2009.

P. Kundur, J. Paserba, V. Ajjarapu, et al, "Definition and classification of power system stability", IEEE/CIGRE Joint Task Force on Stability: Terms and Definitions. IEEE Transactions on Power Systems, Vol. 19, Pages: 1387-1401, August 2004.

J. Vlach, and K. Singhal, Computer methods for circuit analysis and design, Springer, 1983.

Y. Nguegan, "Real-time identification and monitoring of the voltage stability margin in electric power transmission systems using synchronized measurements", Universität Kassel, Tesis Doctoral, junio de 2009. [Online]. Available: http://www.uni-kassel.de/hrz/db4/extern/ dbupress/publik/abstract_en.php?978-3-89958-756-2.

Regulación CONELEC No. 007/00, "Procedimiento del Mercado Eléctrico. Mayorista", Definición de términos.

CENACE, "Revisión de las bandas de variación de voltaje en barras y factores de potencia en puntos de entrega del Sistema Nacional de Transmisión", Dirección de Planeamiento, mayo de 2013.