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Abstract: Social behaviors are crucial to improve the acceptance of a robot in human-shared environments. One of the
most important social cues is undoubtedly the social space. This human mechanism acts like a repulsive field to guarantee
comfortable interactions. Its modeling has been widely studied in social robotics, but its experimental inference has been
weakly mentioned. Thereby, this paper proposes a novel algorithm to infer the dimensions of an elliptical social zone from
a points-cloud around the robot. The approach consists of identifying how the humans avoid a robot during navigation
in shared scenarios, and later use this experience to represent humans obstacles like elliptical potential fields with the
previously identified dimensions. Thus, the algorithm starts with a first-learning stage where the robot navigates without
avoiding humans, i.e. the humans are in charge of avoiding the robots while developing their tasks. During this period,
the robot generates a points-cloud with 2D laser measures from its own framework to define the human-presence zones
around itself but prioritizing its closest surroundings. Later, the inferred social zone is incorporated to a null-space-based
(NSB) control for a non-holonomic mobile robot, which consists of both trajectory tracking and pedestrian collision
avoidance. Finally, the performance of the learning algorithm and the motion control is verified through experimentation.

Keywords: Human-robot interaction, control of mobile robots, robot cognition, social robots, social zones, proxemics.

Zonas sociales cognitivas para mejorar la evasion de peatones
con robots moviles

Resumen: Los comportamientos sociales son esenciales para mejorar la aceptacién social de un robot en ambientes
compartidos con humanos. Uno de las cualidades mas importantes es sin duda el espacio social. Este mecanismo humano
actiia como un campo repulsivo para garantizar interacciones confortables. Su modelado ha sido ampliamente estudiado
en robdtica social, sin embargo su inferencia experimental ha sido apenas mencionada. De esta manera, este trabajo
propone un novedoso algoritmo para inferir las dimensiones de una zona social eliptica a partir de una nube de puntos
alrededor del robot. El enfoque consiste en identificar cémo los humanos evitan al robot durante una evasién en un
ambiente compartido, y posteriormente usar esta experiencia para representar obstdculos humanos como campos elipticos
potenciales con las dimensiones previamente identificadas. Para ésto, el algoritmo empieza con una primera etapa de
aprendizaje donde el robot navega sin evadir a los humanos, i.e. los humanos estan a cargo de evadir al robot durante el
desenvolvimiento de sus tareas. Durante este periodo, el robot genera una nube de puntos de mediciones laser 2D desde su
marco de referencia para definir las zonas de no-inferencia humana alrededor de si mismo, pero priorizando sus cercanias.
Posteriormente, la zona social que ha sido inferida se incorpora a un control de movimiento basado en espacios nulos
(NSB) para un robot mévil no holonémico, el cual se disefia para seguir trayectorias y evitar colisiones con peatones.
Finalmente, el rendimiento del algoritmo de aprendizaje y el control de movimiento es verificado experimentalmente.

Palabras claves: Interacién humano-robot, control robot méviles, cognicién robética, robots sociales, zonas sociales,
proxémica.

1. INTRODUCTION

Cognitive robots are endowed with intelligent behavior, which
allows to learn and reason how to behave in response to complex
goals in a real environment. In general, its application focuses on
creating long-term human-robot interactions. In consequence, this
field of study is centered on developing robots that are capable
of perceiving the environment and other individuals to learn from
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experience and to adapt their behavior in an appropriate manner
(Aly, Griffiths, y Stramandinoli, 2017). As with human cognition,
robot cognition is not only good at interaction but that interaction
is indeed fundamental to build a robotic cognition system.

Inspired by the proxemics studies developed by Hall (1963),
some conventions have been established in robotics in order to
avoid the intimate and social spaces of humans depending of the
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task, the situation, and even of specific human behavior reaction.
For example, Chi-Pang, Chen-Tun, Kuo-Hung, y Li-Chen (2011)
discuss different types of personal space for humans according to
the situation, e.g., they assume an egg-shaped personal space for
the human while it is moving, in order to have a long and clear
space to walk (giving the sense of safety). For this, they consider
that the length of the semi-major axis of the potential field is
proportional to the human velocity. In Scandolo y Fraichard
(2011) it is used the personal space in their social cost map model
for path simulation. In Guzzi, Giusti, Gambardella, Theraulaz, y
Di Caro (2013) it is incorporated a potential field that dynamically
modifies its dimensions according to the relative distance with the
human to avoid occlusion events or “deadlocks”. In Ratsamee,
Mae, Ohara, Kojima, y Arai (2013), a human-friendly navigation
is proposed, where the concept of personal space or “hidden
space” is used to prevent uncomfortable feelings when humans
avoid or interact with robots. This is based on the analysis of
human motion and behavior (face orientation and overlapping of
personal space).

According to proxemics research, the actual shape of the social
zones is subject to tweaking and the preferred distances between
humans and robots depend on many context factors. Most of
them have growing costs as the distance to some area decreases
(Kruse, Pandey, Alami, y Kirsch, 2013). Due to the diversity
of models for the social zone, find the optimal selection of
distances and shapes results also a key challenge. For example,
Pacchierotti, Christensen, y Jensfelt (2006) evaluates through an
experimental methodology the social distance for passage in a
corridor environment to qualitative determine the optimal path
during the evasion. The hypothesis that people prefer robots to
stay out of their intimate space when they pass each other in
a corridor is qualitatively verified. On the other hand, Kuderer,
Kretzschmar, y Burgard (2013) proposes an approach that allows
a mobile robot to learn how to navigate in the presence of humans
while it is being tele-operated in its designated environment. It
is based on a feature-based maximum entropy learning to derive
a navigation policy from the interactions with the humans. Other
approaches considers that the comfort of the individual is not only
guaranteed through the avoidance of these social zones, but also
the dynamics during the meddling events, i.e., to give a natural,
smooth and damped motion during the interaction by considering
these zones as flexible potential zones (Herrera, Roberti, Toibero,
y Carelli, 2017).

In this paper, the “hidden-dimension” or social space of humans is
characterized by the robot with previous experiences. It consists
of taking measurements in front of the robot to determine zones
of the lowest human-presence around itself. Under the hypothesis
that this zone can be modeled like elliptical potential fields,
the best elliptical zone that fits to the zone with lowest human
presence is defined as the cognitive social field. The use of this
inferred ellipse is based on the hypothesis that humans avoids
other individuals in the way they would like to be avoided (Fong,
Nourbakhsh, y Dautenhahn, 2003). With the inferred social
zone, the design of a null-space approach (NSB) for trajectory
tracking control and pedestrian collision avoidance is proposed.
The first-priority task consists in keeping out of social zones of

humans, which are defined as elliptical potential fields which are
moving with a non-holonomic motion, and whose dimensions are
defined as mentioned. On the other hand, the secondary task is
related to follow the predefined trajectory. The good performance
of the designed control is verified experimentally.

In this way, Section 2 presents a novel algorithm to estimate the
social zone of the robot based on laser measures and acquisition,
storage and update policies during direct interaction with humans.
Later, in Section 3, the estimated dimensions of the social zone
are used to infer a social potential field for human obstacles. Fo-
llowing with this, in Section 4 the avoidance of this field and the
trajectory tracking tasks are included as part of a null-space based
control design. In Section 5, the performance of the algorithm is
tested through experimentation with a mobile robot Pioneer 3AT
which is navigating in a structured human-shared scenario. Fi-
nally, some conclusions are presented in Section 6.

2. COGNITION SYSTEM

Learning from the experience is doubtlessly a human quality
that must be used by robots to understand and reproduce human
behaviors, which enhances the human-robot interaction (Fong y
cols., 2003).

The humans unconsciously define a social zone for the robot whi-
le avoid it, which is represented by the the non-meddling zone, i.e.
the region near to the robot that has been not invaded by the hu-
man. This section presents a cognitive system in which the robot
learns how to avoid humans by analyzing how the human avoids
the social space of the robot (see Fig. 1). In this manner, it is pro-
posed to use this hypothesis to infer a social zone for collision
avoidance with humans. For this, elliptical social zones have been
frequently chosen by researchers to represent human obstacles,
which have proved to improve the social acceptance of robots na-
vigating between humans (Rios-Martinez, Spalanzani, y Laugier,
2015). In this way, consider the equation of the ellipse in the robot
framework expressed in polar coordinates by

sinf® 1
= ﬁ’

cos2 6
a? b?

where > 0 and 0 € [0,27) are the radial and angular coordinates
of the ellipse points, and a,b > 0 are the major and minor axis of
the ellipse, respectively.

2.1 Data acquisition

For each detection event, new laser measurements (r;,6;),
i =1,---,n are captured from the robot, where r; and
6; € [—m/2,1/2] are respectively the distance and the orientation
relatives to the robot from which a human is observed, and n; is
the number of measurements of humans for each detection event
(see Fig. 1).

These measures are organized in a vector of n,—distances
dpew = [r1,---,r)7 and its corresponding ray-angles
Onew = [01,--+,6,,]7. Due to computational costs, a mecha-
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Figura 1. Robotic Cognition System.

nism for eliminating non-informative data must be incorporated.

In this manner, new observations of humans, compactly expres-
sed by Dpew = [dnew, @new| must be incorporated or not into the
points-cloud D = [d, 8] acquired so far. The procedure is based on
storage and update policies, which are shown in the next subsec-
tions (see flowchart in Fig. 2).

Storage and update policies
(D, p) =subsampling(D, Dpew, p)
D =RayMeasures(D)

Start
COGNITION
SYSTEM

End
COGNITION
SYSTEM

> threshold

< threshold

Data acquisition
Read old measures D
Acquire range-laser data Dpew 4 [dnew, Onew]

o &

Figura 2. Flowchart of the cognition system.

Identification of the elliptical social zone
la,b] =EllipseWLS(D)

2.2 Storage and update algorithms

Let N = size(D) be the size of the points-cloud, which is limited
by the need of reducing computational costs, outliers observa-
tions, and redundant data. These objectives are reached by using a
subsampling procedure, which is the random process of reducing
the sample size from K to k < K (subsampling performed in one
step), where each observation remains in the subsample with
probability k/K. If a storage quota of C observations is also
considered, then it is required to perform a subsampling every
time that the number of stored observations N exceeds the quota
C, in which each observation has a probability C/N of remaining
in the subsample (recursive subsampling).

This task is reached by using Algorithm 1, in which new obser-
vations are properly incorporated in D so that all observations
(regardless of when they are acquired) have the same probability
p of belonging to the points-cloud.

The procedure consist of initializing a empty points-cloud (N = 0)
and an acceptance probability of new observations p = 1. The
algorithm incorporates all the observations acquired to the points-
cloud until N +n; > C. When it happens for the first time, C
observations must be subsampled and the remaining observations
must be deleted.

Then, probability of belonging to the points-cloud is updated to
p=C/N, and N is set to C. From this moment, all new observa-
tions must undergo an acceptance process in order to match their
probability with the probability p of the observations acquired pre-
viously (steps 6-10 of the Algorithm 1). Later, if the quota is still
exceeded a new subsampling is performed and the acceptance pro-
bability is decreased (steps 11-13 of the Algorithm 1). In this way,
all observations (originals and news) have the same probability p
of belonging to the points-cloud.

Algorithm 1 (D, p) =subsampling(D, Dpew, p)

1: N =size(D)

2: n; = size(Dpew)

3: if N+n, < C then > if the storage quota is not exceeded
4: D= [D;Dnew]

5: else > if the storage quota is exceeded
6: fori=1:n,do > for each new observation
7: u=rand(0, 1) > uniform random number
8: if u > p then > acceptance-rejection procedure
9: i-th new observation is deleted
10: n=n—1
11: if N+n; > C then > if the quota is still exceeded
12: subsample C obs. without replacement.
13: p=pC/N > update the acceptance probability
14: N=C
15: else
16: D= [D;Dnew]

Subsequently, a process is incorporated to avoid the agglomera-
tion of observations in specific angular direction from the robot
framework, in order to unify the angular distribution of the points-
cloud. For them, the number of measures per ray is also limited by
considering only the C nearest measures to the robot, and measu-
res in excess are discarded (see Algorithm 2).

Algorithm 2 D =RayMeasures(D)

1: fori=1:180do
2: #0; = size(0 = 6;) > number of obs. in each angle 6;.
3 if#6;, > C then > agglomeration test
4: Leave only the C nearest obs. and delete the others.

> for each angle

2.3 Identification of the elliptical social zone

The identification procedure consists of estimating the parameters
a and b that minimize the following functional

N 2 ) 2
cos“0; sin“6; 1
J(a,b|D): E wi <612+bzlr2) 3

i=1 i
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where (r;, 6;) is the i-th observation, and w; are weight factors that
allow to incorporate influence levels of the observations in the es-
timation. This optimization is equivalent to find the weighted least
squares solution of the linear system Y = X®, where

rfz cos?0; sin? 6,
-2 2 : 2
T cos“ 6, sin“ 6, a2
Y= 5 X= . 5 0= b72 5
rl\_,2 cos? Oy sin? Oy

and the weight matrix is the N x N diagonal matrix
W =diag({w;}).

In this case, the weight factors are defined as

expd — <ri—rmin,i>2
I.L b

where 0, it > 0 are design constants and 7y ; is the minimum
distance observed in the direction 6;. This definition gives higher
priority to points near to the robot (to obtain an internal ellipse
to the points-cloud), as well as, to points in the front-side (to
compensate that these observations are less frequent and distant

from each other).

o 8 +sin®(6;)
T T

Then, the solution of the optimization problem is given by
0 = (X"WX)"'XTwy. (1)

Algorithm 3 performs this estimation.

Algorithm 3 [a,b] =ElipseWLS (D)

c 0= X"WX) 'XTWY
a=0(1)"12, b=0(2)"1/2

1. r=D(;,1), 6 =D(:,2)

2: fori=1:Ndo > for each observation
3: Fmin,; = min(r(6 = 6;))

4: Y (i,:) = [cos?(6;),sin?(6;)]

i X(i)=1/r?

6: W(i,i) =w;

7

8:

2.4 Learning indicator

Infer a social space requires to define a learning indicator during
the cognition stage, which determines a condition where the
ellipse dimensions can be well defined, and in consequence a
social zone for human collision avoidance algorithms could be
estimated.

Let % be a dispersion factor for the laser-angle 6; with
i=1,---,180, defined as,

) Fi— Fming

Y= { 7i—R
where 7; is the mean of the distances in the direction 6;, R is a
radius-range used as design parameter and where it is expected to

Tmin,i <R,

2
T'min,i >R, @

fit the ellipse (represents a radius of social interaction), and ryip, ;
is the minimum distance observed in the direction 6;.

In this manner, let y be the learning indicator defined by,

180

Y=Y %/180. 3)
i=1

In this manner, the points-cloud can be only used for estimating a
social zone when 7 is less than a threshold.

3. SOCIAL POTENTIAL FIELD

As mentioned, social zones are interpreted as repulsive potential
fields, which guarantee the human comfort during interactions.
Thereby, once that the dimensions of the minor and major axis
of an elliptical social zone have been inferred of the cognition
system, an elliptical potential field is defined as follows.

Let x;, = [xp, yh]T be the Cartesian position of a human obstacle,
@y its orientation and x, = [x,y,]7 the Cartesian position of
the robot in the global framework x —y. Additionally, consider
an alternative framework x* — y*, which corresponds to x — y
rotated by ¢y, (see Fig. 3). In this rotated framework, if the human
position is x; = [x},y7]” and the robot position is x} = [x,y*]”
then the potential field V}, is expressed as,

X —x* 2 y*_y* 2
e () (50 1

where a is the major-axis length of the elliptical Gaussian form,
and b is the minor-axis length (see Fig. 3). The time-dependency
of these variables has been neglected to simplify the notation.

yr‘_:_ (xr,};)@

E}

|

I

I
xh x?_

Figura 3. Schematic description of the social zone.

In order to define the Jacobian that relates the potential variation
with the motion of the robot, consider the time derivative of the
potential as follows:

V=
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oV, AV, 9V, IV, 9V, IV,

T o
[x¢7y:7xZayZ7a7b} .

Solving this expression through algebraic steps, it results
Vi = JoX — k), + Jac + Jpb. (4)
where,
Js= =2V, [(xf =) fa?, (7 =33) /0°]
Ja = 2Vi(x; —x3)* /@, and, Jy = 2V, (v} —¥;)? /.
If the rotation matrix is defined as,

R— [cos(ph

sin (03
—sin (03 ’

cos @y,
then it results possible to express (4) in the x — y global framework,

ie., X; = Rx,, Xx; = Rx;. The time-derivative of these expressions
results,

% = R, + po, 5)
where,
. . T
p:= [— Sin Qpx, +COS @y, —COS QPpX, — Sin gohyr]
Similarly for the human position,
% “Te o« aT
=Tt vn on (6)
where,
Ji— cos@Q, sin@, —sin@yx;, + cos Qnyy
W | —sing, cos@, —cos@ux, —sing@,y,|’

If additionally it is considered a non-holonomic motion for the
human gait (Arechavaleta, Laumond, Hicheur, y Berthoz, 2006;
Leica, Toibero, Roberti, y Carelli, 2014),

Xp, cosg, O Vi , Vi
W, —Jh w, )

yu| = |sing, O
(ph 0 1

then operating with (6), it results,

Sk Tk Vi
X, = Jth |:wh:| ) (N
where v;, and wy, are the linear and angular of the human obstacle,
respectively.

In this way, by substituting (5) and (7) in (4), results that

Vh = JsRX +Jspw]1 - JsJZJh |:CO]]11:| +Jaa +Jbb,
=JoX+g.
Therefore, the total repulsive effect over the robot in a position
X, := (x,,y,) is calculated as the sum of all the repulsive effects
Vi,j generated by n human obstacles in the shared scenario, i.e.
V= Z'}=1 Vij» and, in consequence

Vi=Ji% +g, @®)

where Ji := Y, Joj,g := ¥j_ g; are the Jacobians and com-
pensation motion factor under the presence of n human obstacles,
respectively.

4. NULL-SPACE BASED CONTROL

Consider a robot that must develop a task in a human-shared envi-
ronment fulfilling two objectives: trajectory tracking and collision
avoidance with humans.

4.1 Principal task: Collision avoidance with humans

The meddling avoidance of the robot into human social zones is
defined as the principal task. Thus, if V is considered as the task
variable, then from (8), the minimal norm solution for this task is
(1)

expressed through the control action X; ’ as,

! =] (Va+ KV —g), ©
where the desired potential is V; = 0, V:=V;,—V,and K, =
diag(kz, k), with k, > 0 a design parameter. The incorporation
of g improves the performance of the evasion of humans com-
pared to other approaches for common dynamic obstacles. This
factor compensates the linear motion of the obstacle, but also it is
related to the angular motion of this elliptical shape.

4.2 Secondary task: Trajectory tracking control

For the secondary task, consider a desired trajectory x; = [x,y,]7,

which must be tracked by the robot. In this way, the control ob-

jective is based on controlling the robot position x, = [x,,y,]”. For

this, consider an error-proportional solution for the secondary task

expressed through the Cartesian robot velocities as
. (2)

1% = %, + KoX, (10)

where & = [x; — x,,y; — y,]7, and K, = diag(ka, ky) with k >0 a
design parameter for the secondary task.
4.3 Solution for a differential drive mobile robot

Consider the non-holonomic kinematic model of the robot expres-

sed as,

Xy cosQ, —rsinQ,| | Vv,

Sl=1". =Ju,

Vr sinQ, rcos@, | |@,
where X, = [x, yr]T is the robot position located on the symmetry
axis between the wheels at a distance of r from the wheel axis,
@, is the robot orientation, J, is the Jacobian, and u, = [v,, ®,]”

is a control input vector with the linear and angular velocity
respectively.

(1)

Thereby, consider an inverse kinematic solution given by

u =%, (12)
where %\ = ['@, y'ﬁc)]T is the control action in Cartesian coor-
dinates, which must be defined to develop both tasks respecting
the priority order. With this purpose, it is defined a null-space ba-
sed control defined by (Antonelli, Arrichiello, y Chiaverini, 2009;
Chiaverini, 1997):

€9 ="+ 1—J{g)x?, (13)

where (I—J }LJ 1) is the projection over the null-space of J;.
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5. EXPERIMENTATION

5.1 Experimental setup

The experimentation is developed in a structured scenario,
which is scanned by a ceiling camera. The algorithm consists in
capturing color images in each sample time, where the posture
of each experimental individual, i.e. the robot and the human
obstacle is characterized through the centroid positions of two
colors, easily distinguishable!.

Additionally, a Pioneer 3AT robot is equipped with a 180-degrees
LIDAR sensor (one degree of resolution), and the measures and
commands to the robot are sent through a client/server WiFi con-
nection. In this case, a sample time of 7, = 0.1[s] is considered to
control the robot during the experiment. The selected parameters
for the experiments are shown in Table 1.

Tabla 1. Parameters used during the experimentation.

Parameters
ts = 0.1[s], fmax = 560]s]
€ =1710,C = 10, = 0.01,6 = 0.01,R = 2[m]
If y<1 then avoid.
ki = 0.001,k, = 0.1
Xy = 2¢08(27t [tmax) — 0.5,y; = Sin(27¢ /tmax)

General

Cognitive system

Motion control

5.2 Cognition system results

In Fig. 4, it is presented the trajectory followed by the robot
when captures the information. Note that, at first, the robot takes
measurements, which are not representative to infer a social zone,
but they are discarded in an iterative way during the experiment,
and only the points in the nearest to the robot are stored and
updated according to the previous defined policies.

Figura 4. Photo sequence during the experiment.

At the beginning of the experiment, the robot tracks the tra-
jectory without avoiding the human obstacles, i.e. while y > 1
the humans are in charge of avoiding the robot, because the
robot is not able to infer a social zone yet (see video clip in
https://youtu.be/acpYuOI3XDI).

Along time, the inferred major and minor-axis length achieves
a bounded and practically constant condition, even when the
learning factor continues decreasing (see results before dashed-
red-line in Fig. 5).

Once that the spread of the points-cloud is well-defined around the
social zone of the robot, i.e. when ¥ < 1, the robotic system starts

IColors are neither in the scenario nor in the experimental individuals.

Learning factor
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Figura 5. Learning indicator and inferred ellipse dimensions along the time.
Dashed red lines refers the point when y = 1.

using this learning to avoid the human obstacles while tracking the
trajectory as intended. This time depends of each experiment and
the degree of interaction with humans, and in this case, it happens
at + = 133.3[s]. Note that the cognitive system continues getting
new data and improving its learning factor, but the variation of the
inferred major and minor-axis length remains practically bounded
(see results after dashed-red-line in Fig. 5).

5.3 Motion control results

The control errors and the trajectories generated during a time-
lapse of the experiment are shown in Fig. 6. Marked with green
boxes, some collision avoidance events are shown, where the con-
troller is able to guarantee the convergence of the trajectories
after that the collision is avoided. Note that the control objecti-
ves are fulfilled in a priority order as expected (see video clip in
https://youtu.be/acpYuOI3XDI).

Desired and followed trajectory in x-axis

1 i Sy —
g:% e ‘ ‘ ‘ e
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Figura 6. Control errors of the robot.
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6. CONCLUSION

This paper has presented a novel cognition system to infer a social
field from laser measurements. For this, acquisition, storage and
update policies have been proposed to build the social zone of the
robot based on direct human-robot interactions. Later, this lear-
ning allows representing human obstacles as elliptical potential
field with non-holonomic motion, which according to the resear-
chers, improves the social acceptance of the mobile robots during
human-robot interactions. Following with this, a null-space based
(NSB) motion control to track a trajectory and to avoid pedestrians
by considering a differential drive mobile robot is proposed. Fi-
nally, the algorithm has been tested through experimentation, and
the good performance of the cognition system and motion control
strategy has been verified. Based on the hypothesis that humans
avoids other individual in the way they would like to be avoided,
authors believe that the proposed algorithm improves the social
acceptance of mobile robot during human-robot interactions, be-
cause it is capable to learn this behavior and reproduce it during
the pedestrian collision avoidance.
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