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Abstract: The necessity to deal with partial differential equations (PDEs) and the dissipation condition are the main
adversities in the application of Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC). Recently,
an algebraic solution of IDA-PBC has been explored for a class of affine polynomial systems by using sum of squares
(SOS) and semidefinite programming (SDP). In this work, we extend the previous method by incorporating actuator
saturation (AS) and two minimization objectives in the SDP. Our results are validated on two polynomial systems.
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IDA-PBC Algebraico Para Sistemas Polinomiales con Saturación
en las Entradas: Un Enfoque Basado en SOS

Resumen: La solución de ecuaciones diferenciales parciales (PDE) y la condición de disipación son las principales
adversidades en la aplicación de Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC). Recien-
temente, se ha explorado una solución algebraica de IDA-PBC para una clase de sistemas polinomiales utilizando el
método de suma de cuadrados (SOS) y la programación semidefinida (SDP). En este trabajo se amplía el método anterior
incorporando saturación en los actuadores (AS) y dos objetivos de minimización en la SDP. Nuestros resultados son
validados en dos sistemas polinómicos.

Palabras claves: Sistemas Port-Hamiltonianos, IDA-PBC, Sistemas Polinomiales, Suma de Cuadrados, Saturación del
Actuador.

1. INTRODUCTION

Over the last decade, Interconnection and Damping Assignment
Passivity-Based Control (IDA-PBC) has experienced increasing
practice due its wide applicability (Petrović et al., 2001; Batlle
et al., 2004, 2007; Ortega and García-Canseco, 2004; Li et al.,
2010; Astolfi and Ortega, 2001; Fujimoto et al., 2001; Renton
et al., 2012; Li et al., 2013; Astolfi et al., 2002a; Xue and
Zhiyong, 2017). The standard IDA-PBC method requires a two
step procedure: energy shaping and damping injection. The first
depends on the solution of partial differential equations (PDEs)
and the second together with zero state detectability (ZSD) of the
closed-loop guarantees asymptotic stability.

In order to simplify the PDE problem Viola et al. (2007) have
introduced a change of coordinates and a modification of the
target dynamics. With the objective to completely avoid PDEs,
the following leading methods have been proposed: constructive
procedures (Donaire et al., 2016a; Borja et al., 2016; Romero
et al., 2017), implicit port-Hamiltonian representation (Macchelli,
2014; Castaños and Gromov, 2016) and an algebraic approach
(Fujimoto and Sugie, 2001; Batlle et al., 2007; Nunna et al.,
2015). In addition, it has been shown in (Batlle et al., 2007;

Donaire et al., 2016b) that a two step IDA-PBC may be restrictive
in some cases, thus introducing a single step procedure (SIDA-
PBC). Furthermore, dissipation in the under-actuated degrees of
freedom, see (Gómez-Estern and Van der Schaft, 2004), may also
turn out an obstacle for the implementation of IDA-PBC on some
systems, e.g. on the cart-pole system (Delgado and Kotyczka,
2014).

It is well-known that actuator saturation (AS) can cause per-
formance losses or even lead to closed-loop instability. In this
context, Åström et al. (2008); Escobar et al. (1999) have studied
PBC with AS on two specific systems. Sun et al. (2009); Wei and
Yuzhen (2010) analyze stability for saturation in the damping in-
jection term. A variable structure approach to energy shaping for
a class of Port-Hamiltonians system is developed in (Macchelli,
2002; Macchelli et al., 2003). Besides, Sprangers et al. (2015)
studied a reinforcement learning method for energy shaping
which shows robust properties under AS.

In polynomial systems the sum of squares (SOS) approach with
semidefinite programming (SDP) allows to synthesize Lyapunov
functions (Parrilo, 2000), optimal (Ichihara, 2009), robust (Zhu
et al., 2018; Jennawasin et al., 2010), fuzzy (Wibowo et al., 2014;
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Yu and Wang, 2013) and AS-focused controllers (Jennawasin
et al., 2012; Valmorbida et al., 2013; Ichihara, 2013), among
others. This AS controllers, calculated with SOS, use the polytope
representation introduced in (Hu and Lin, 2001) for linear system
with multiple input saturation.

For a class of polynomial affine systems, lately, Cieza and Reger
(2018) have presented an algebraic method the conditions of
which are met by means of SOS and SDP solutions. The method
solves the typical problems of IDA-PBC at the expense of an
adequate parametrization and selection of the Hamiltonian. To
the best knowledge of the authors there is no definitive solution to
the AS controller design problem with IDA-PBC. The underlying
work shall now also incorporate AS and two minimization
objectives in the SDP solver, extending the algorithm of Cieza
and Reger (2018).

The work is organized as follows. We summarize the concepts
of IDA-PBC for nonlinear affine systems in Section 2. Section 3
recapitulates the algebraic method of Cieza and Reger (2018). In
Section 4 we solve the AS problem in the algebraic approach using
additionally two minimization objectives. We discuss the appli-
cation of SOS methodology and verify our results in Section 5,
applying the approach on two polynomial systems. Finally, we
draw our conclusions in Section 6.

2. IDA-PBC FOR AFFINE NONLINEAR SYSTEMS

Let us recall the IDA-PBC approach for nonlinear affine systems
introduced by Ortega and García-Canseco (2004). Consider the
system

ẋ = f (x)+ g(x)u (1)

and the target port-Hamiltonian system

ẋ = Fd(x)
(

∂Hd

∂x

)>
(x), (2)

where Xh ⊂ Rnx is the state space manifold, U ⊂ Rm is
the input space, g has full rank, the skew symmetric portion
1
2

(
Fd−F>d

)
∈ Rnx×nx is the interconnection matrix, the symme-

tric portion Rnx×nx 3 1
2

(
Fd +F>d

)
� 0 is the dissipation matrix

and Hd : Xh→R with x? = argmin Hd(x) is the desired positive
definite Hamiltonian. If the matching condition1

g⊥(x) f (x) = g⊥(x)Fd(x)
(

∂Hd

∂x

)>
(x) (3)

is fulfilled for some Fd , Hd and full rank left annihilator2 g⊥ then
the control law

uI =
(

g>(x)g(x)
)−1

g>(x)

(
Fd(x)

(
∂Hd

∂x

)>
(x)− f (x)

)
transforms (1) into the stable system (2) with Lyapunov function
Hd . Asymptotic stability of x? in the attainable set Xa = {x∈Xh |

1If in the matching condition (3) the structure of Fd(x) is fixed, then (3) is a
PDE. If H(x) is fixed, then (3) is an algebraic equation.

2The full rank left annihilator g⊥ is given by g⊥(x)g(x) = 0 and rank (g⊥) =
nx−m. Consequently, (3) exists iff nx > m.

g⊥ f = 0} may be demonstrated e.g. by using passivity with Lya-
punov stability theory, see (Astolfi et al., 2002b; Sepulchre et al.,
1997).

3. IDA-PBC FOR POLYNOMIAL SYSTEMS

In this section we summarize Proposition 4–5 from (Cieza and
Reger, 2018) for β = 1. The variable β of the aforementioned
work can be considered as a scaling factor, which does not alter
our main results.

3.1 Algebraic IDA-PBC

Let Γ(x), g(x), g⊥(x), and g⊥(x) f (x) be polynomial functions in

Γ(x)ẋ = f (x)+ g(x)u (4)

and the desired closed loop port-Hamiltonian system

Γ(x)ẋ =
[

g⊥(x)
g>(x)

]−1

F(x)
(

∂Hd

∂x

)>
(x), (5)

where

F(x) =
[

F1(x)
F2(x)

]
, Hd(x) = z>(x)P−1z(x), P = P> � 0.

Without loss of generality let argmin Hd(x) = 0. Besides, state
and input spaces remain as in (1), z : Xh → Rnz is a vector of
polynomials with nz ≥ nx, P ∈ Rnz×nz is a constant matrix, F ,Γ :
Xh→Rnx×nx are full rank polynomial matrices3, and F holds the
portions F2(x) ∈Rm×nx and F1(x) ∈Rnx−m×nx .

Proposition 1 Closing the loop of system (4) with control

ub = (g>g)−1

(
F2

(
∂ z
∂x

)>
P−1z−g> f

)
(6)

renders the equilibrium point x? = 0 of the closed loop system
(5) locally stable for any initial state x(0) = x0 ∈ XP = {x ∈
Rnx | Hd(x) = z>(x)P−1z(x) ≤ 1} whenever the following con-
ditions are fulfilled for all x ∈ Xh = {x ∈ Rnx | 0 ≤ h(x) =
1− z>(x)S−1

h z(x), Sh � 0}:

C1 There exist polynomial functions Λ1(x), g⊥(x) and z(x) such
that g⊥(x) f (x) = Λ1(x)z(x) and z(x) = 0 iff x = 0. Besides,
if nz = nx then ∂ z

∂x is unimodular4, else ∂ z
∂x has rank nx and(

∂ z
∂x

)
⊥
(x)PΛ>1 (x) = 0 with

(
∂ z
∂x

)
⊥

the full rank left annihi-
lator of the Jacobian of z.

C2 There is a polynomial function N(x) such that if nz = nx

then N(x) =
(

∂ z
∂x

)−>
(x), else

(
∂ z
∂x

)>
(x)N(x) = Inx and

[N
(

∂ z
∂x

)>
⊥
] is a full rank square matrix.5

3Invertibility of Γ enables (4) to take the usual form ẋ = f̄ (x) + ḡ(x)u and

Fd(x) = Γ−1(x)
[

g⊥(x)
g>(x)

]−1

F(x).
4Polynomial matrices are unimodular if the inverse matrix again is a polyno-

mial matrix. Their determinant always is a non-zero constant.
5Here In represents the identity matrix of size n.
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C3 There is a constant matrix P, and polynomial matrices 0 �
S1(x) ∈Rnx×nx and F2(x) such that

−Φ(x)−Φ>(x)−h(x)S1(x) � 0, (7)

Sh � P� z(x0)z>(x0), (8)

Φ =

[
g⊥
g>

]
Γ
[
F>1 F>2

]
, F1(x) = Λ1(x)PN(x).

Furthermore, the origin of (5) is asymptotically stable if

−Φ(x)−Φ>(x)−h(x)S1(x) � 0 and (9)

for nz > nx,
(

∂ z
∂x

)>
(x)P−1z(x) = 0 implies x = 0.

Proof 1 It can be found in (Cieza and Reger, 2018) with a modi-
fication of (8) using the Schur complement. �

3.2 Existence of ub

The next proposition provides a sufficient condition for the exis-
tence of F2, i.e. the existence of the (asymptotically) stabilizing
control law (6).

Proposition 2 Consider x0 ∈XP ⊂Xh and assume Λ1, g⊥, z, N
are selected according to C1 and C2. Then there exists a function
F2(x) that meets C3 if there exists P = P> � 0 and S2(x)� 0 such
that

−φ (x)−φ
>(x)−h(x)S2(x) � 0, (10)

φ (x) = g⊥(x)Γ(x)F>1 (x) = g⊥(x)Γ(x)N>(x)PΛ>1 (x),

with φ (x), S2(x) ∈ Rnx−m×nx−m. Additionally, (9) is solvable as
long as

−φ (x)−φ
>(x)−h(x)S2(x) � 0. (11)

Lastly, if (10) or (11) are satisfied, then a solution for F2 with
0� L(x)+L>(x) ∈Rm×m is

F2 =
[
−g>(x)Γ(x)F>1 (x), L(x)

][g⊥(x)
g>(x)

]−>
Γ−>(x) (12)

Proof 2 See (Cieza and Reger, 2018, Prop. 5). �

Application of the algorithm starts with adequate selection of Λ1,
z, g⊥ and N according to (4), (5), C1 and C2. Later, we choose h
and solve (for convenience) (7), (9), (10) or (11) searching for P
(and F2 in case of Prop. 1) under (8) which defines an upper and
lower bound on P, namely x0 ∈XP ⊂Xh for some given x0.

In comparison, Proposition 2 requires the solution of smaller
LMIs to calculate the parametrized function F2, see (12), or to
guarantee its existence, whereas Prop. 1 defines F2 as general
function s.t. (7) (and (9)) is satisfied, which grants more flexibility
at the expense of computational cost. In order to use SOS with
SDP we force F2 (in Prop. 1) to be a polynomial function of some
selected degree.

Proposition 2 can also be used as a fast indicator such that Propo-
sition 1 will work. Note that Proposition 2 contains the minimal

conditions that P, Λ1, g⊥, N, h and Γ have to satisfy, and it gua-
rantees the existence of a not necessarily polynomial function F2.
Hence, if we constrain F2 to be polynomial, then Proposition 2
is experimentally still a good, but not an unconditionally reliable
reference.

4. MAIN RESULT

In view of Proposition 1 and 2, we extend the results of Cieza
and Reger (2018) to consider actuator saturation (AS). In addi-
tion, we define two possible minimizations (optimization objecti-
ves) for the SDP.

4.1 Actuator Saturation (AS)

Proposition 3 Let all conditions of Prop. 1 for local (asymptotic)
stability be satisfied and assume:

C5 There exist polynomial matrices Λ2(x) ∈ Rm×nz and 0 �
S3(x) ∈Rm×m such that[

Λ1(x)
Λ2(x)

]
z(x) =

[
g⊥(x)
g>(x)

]
f (x), (13)[

η11(x) η12(x)
η>12(x) P

]
� 0, (14)

η11(x) = (g>g)(x) Su(x)(g>g)(x)−h(x)S3(x),

η12(x) = F2(x)
(

∂ z
∂x

)>
(x)−Λ2(x)P.

Then the stabilizing control law (6) is restricted to Ub = {ub ∈
U | u>b S−1

u (x)ub ≤ 1} with Rm×m 3 Su(x) = S>u (x) � 0 for any
x ∈XP.

Proof 3 Multiplying (14) on both sides by adequate matrices and
using the Schur complement yields

Im−WW> � hS
− 1

2
u (g>g)−1S3(g>g)−1S

− 1
2

u (15)

with W (x) = S
− 1

2
u (g>g)−1(F2

(
∂ z
∂x

)>
P−

1
2 −Λ2P

1
2 ) and P

1
2 P

1
2 =

P. Now taking the spectral norm on (15) for x ∈XP ⊂Xh, i.e.

h≥ 0, and the definition of XP as
∥∥∥P−

1
2 z
∥∥∥2

2
≤ 1 we have

1≥
∥∥∥∥S
− 1

2
u (g>g)−1

(
F2

(
∂ z
∂x

)>
P−

1
2 −Λ2P

1
2

)∥∥∥∥2

2

≥
∥∥∥∥S
− 1

2
u (g>g)−1

(
F2

(
∂ z
∂x

)>
P−

1
2 −Λ2P

1
2

)∥∥∥∥2

2

∥∥∥P−
1
2 z
∥∥∥2

2

≥
∥∥∥∥S
− 1

2
u (g>g)−1

(
F2

(
∂ z
∂x

)>
P−1z−Λ2z

)∥∥∥∥2

2

=

∥∥∥∥S
− 1

2
u ub

∥∥∥∥2

2
= u>b S−1

u ub,

where last equalities are obtained with (13) and (6). �

After solving the conditions of Proposition 1 and 3, we may cal-
culate a control input ub ∈Ub, for any x ∈XP. Proposition 3 can
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also be extended to work with Prop. 2 by replacing (12) in (14).
This yields an LMI which is not necessarily polynomial. Therefo-
re, we restrict L to be polynomial and multiply (14) on the right
with the square non-singular matrix6[

Im 0 0 0

0 N(x)Γ>(x)g>⊥(x) N(x)Γ>(x)g(x)
(

∂ z
∂x

)>
⊥
(x)

]
and on the left by its transpose. This results in conditions that can
be solved by means of SOS + SDP.

Following the works of Hu and Lin (2001); Valmorbida et al.
(2013); Ichihara (2013), among others, we may use the polyto-
pe or polytopic saturation model within the algebraic IDA-PBC,
as phrased in the following proposition.

Proposition 4 Let the conditions of Propositions 1 and 3 be sa-
tisfied for some system of the form (4) resulting in some matrices
P, F2 and a locally (asymptotically) stabilizing constrained con-
troller u = ub ∈ Ub given by (6). Consequently, there is a new
(asymptotically) stabilizing control action

us ∈Us =
{

us = ub +(g>g)−1Θuδ |θk ∈ [0,1]
}

, (16)

uδ = (F21−F20)

(
∂ z
∂x

)>
P−1z, F2 = F20,

provided that there exist matrices F21(x)∈Rm×nz and S̄i1...im(x)�
0, s.t. for all ik ∈ {0,1} with k = 1 . . .m,

−Φi1...im(x)−Φ>i1...im(x)−h(x)S̄i1...im(x) � 0, (17)

Φi1...im =

[
g⊥
g>

]
Γ
[
F>1 F>2i1(x)e1 . . . F>2im(x)em

]
,

where Θ = diag(θ1, . . . ,θm) and ei the ith unity vector. In addi-
tion, asymptotic stability is achieved if (9) are satisfied and (17)
is strict.

Proof 4 Define

F2 = ΘF21 +(Im−Θ)F20, (polytope) (18)

and βk0 +βk1 = 1, θk = βk0, then (16) follows from (6) and (18).
Then, replace (18) in (7), multiply it by ∑

1
ik=0 βkik for convenience

and substitute S1 with S̄i1...im which does not affect stability, see
(Cieza and Reger, 2018). Then (7) results in

0�
1

∑
i1=0

β1i1 . . .
1

∑
im=0

βmim

(
−Φi1...im−Φ>i1...im−hS̄i1...im

)
,

and rewritten as a sum of positive semidefinite polynomial fun-
ctions (convex set) this yields

0�
2m−1

∑
j=0

β̄ j

(
−Φ j−Φ>j −hS̄ j

)
, (19)

with j = ∑
m
k=1 ik2k−1, ∑

2m−1
j=0 β̄ j = 1. Therefore, a sufficient con-

dition for (19) is (17). The proof of asymptotic stability follows a
similar procedure. �

6Note that using C2, the square matrix [N
(

∂ z
∂x

)>
⊥
] and as a consequence

[NΓ>g>⊥, NΓ>g,
(

∂ z
∂x

)>
⊥
] has full rank.

Proposition 4 implies that if there is a solution to the conditions of
Propositions 1 and 3 with (17), then there also exists an (asympto-
tically) stabilizing control law (16). In addition, if F2 = F20 = F21
then (16) is reduced to (6) and (17) becomes (7) (or (10)). Propo-
sition 4 can be easily extended to work with Prop. 2 (instead of 1).
In this case, (17) is reduced to[

L>i1 e1 . . . L>imem
]
+
[
L>i1 e1 . . . L>imem

]> ≺ 0,

F2i =
[
−g>(x)Γ(x)F>1 (x), Li(x)

][g⊥
g>

]−>
Γ−>(x).

In the same way as in (Hu and Lin, 2001; Valmorbida et al.,
2013; Ichihara, 2013) for multiple input systems, we can adopt
the independent input saturation given by usat-i = sat(ux,u,u) and
ux = ub + (g>g)uδ , where u and u are maximum and minimum
values of ub in Ub. Figure 1 illustrates the situation for m = 2,
g>g = I2, ux, ub, usat-i and sets Ub, Us.

ub

ux
usat-i

usat-n
u2

u2

Ub

u1u1u1

u2

Us

Figura 1. Relations of u constrained and saturated.

Here, we also observed that in order to have AS, independent input
saturation (usat-i) is not the only solution. Therefore, to simplify
(17), we select θ1 = θ2 = · · · = θm and a new saturation function
given by

usat-n = ub +(g>g)−1uδ min(ρ1, . . . ,ρm),

ρk =


e>k (u−ub)

e>k (g>g)uδ

, if e>k ux > e>k u, e>k (g
>g)uδ 6= 0,

e>k (u−ub)

e>k (g>g)uδ

, if e>k ux < e>k u, e>k (g
>g)uδ 6= 0,

1, otherwise,

which is also shown in Figure 1. Selection of usat-n reduce 2m−1

inequalities and polynomial matrices S̄? in (17).

4.2 Optimization Objectives in SDP

Proposition 1–3 only guarantee a solution for P and F2(x) without
any performance or optimization goal in the SDP. In addition, we
may set the following simple objectives:

Optimization 1 (Volume maximization of XP)

minimize trace(Y )

subject to
[

P Inz

Inz Y

]
� 0. (20)

Proof 5 The volume of XP is proportional to
√

det(P), see (Boyd
et al., 1994, pp. 48-49). In addition, from KL-divergence between
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two multivariate normal distributions, we obtain the relation

trace(Inz −A−1) � log(det(A))� trace(A− Inz) (21)

for any real matrix A � 0. Therefore, maximizing the volume of
XP with P� 0 is equivalent to maximize log(det(P)). Using (21)
we enlarge the minimum bound of log(det(P)) by minimization of
trace(P−1) which is equivalent to Opt. 1 with Schur complement
in (20). �

This minimization is also used empirically in (Ichihara, 2013).
Optimization 1 maximizes the volume of XP by maximizing the
minimum bound of P given by Y−1. Note that searching for the
biggest XP does not demand the explicit selection of x0 (right
hand side of (8)).

Optimization 2 (Volume minimization of Ub)

minimize trace(Su)

subject to Su = constant.

Proof 6 Along the same lines of Optimization 1, except that we
consider the upper bound of (21). �

Without loss of generality, define F2(x) = F̄2(x)PN(x), 0 =

F̄2(x)P
(

∂ z
∂x

)>
⊥
(x), for some function F̄2 ∈Rm×nz . Then, (14) be-

comes

(g>g) Su(g>g)− (F̄2−Λ2)P (F̄2−Λ2)
> � 0,

for all x ∈Xh. This shows that minimization of Su (upper bound
of u) is equivalent to minimize F̄2−Λ2 and an upper bound of
P. As a consequence, it is required to have at least one minimum
bound on P (right hand side of (8) or Opt. 1).

5. SIMULATIONS

It is well-known that the SOS property is a sufficient condition
for checking the non-negativity of a polynomial function (Parrilo,
2000). For this reason, we may search for positive semidefinite
matrices that are matrix SOS polynomials in Propositions 1–4.
To guarantee strict inequalities in the SDP solver, we add 10−3Inz

in P � 0, 10−3Inx−m in (10), and 10−3In in (7) and (17). The
algorithm is processed in Matlab by use of SOSTOOLS and
SDPT3, see (Papachristodoulou et al., 2016). For details on the
transformation from SOS to SDP see (Parrilo, 2000).

In the following examples we search for asymptotically stabilizing
controllers wrt. two systems using the results of Proposition 1–4.
Values presented in this paper have been rounded to three decimals
for better visibility.

5.1 Nonlinear Second Order System

We shall test Proposition 1–3 for synthesizing an asymptotically
stabilizing constrained controller in the system[

ẋ1
ẋ2

]
=

[
x2

1 + x2
x1

]
+

[
0
1

]
u.

First, we pick z(x) = [x1,x2
1+x2]>, g⊥= [1,0], Γ = I2, Λ1 = [0,1]

and Λ2 = [1,0]. Thus, ∂ z
∂x is unimodular and C1–C2 are satisfied.

Then we select Sh = diag(9,9), S1(x) ∈ R2×2 with polynomials
of degree 2 as elements and test Proposition 1 with Optimization
1 (maximizing XP), obtaining XP =

{
x ∈R2 | γ(x) ≤ 1

}
, with

γ(x) = 9x4
1−0.001x3

1 + 18x2
1x2 + 9.0x2

1−0.001x1x2 + 9x2
2.

Next, for illustration we select (a minimum bound on P)
x>0 = [0,2] ∈XP (previously found) and solve (for a new P and
F2) the conditions of Prop. 1 and 3 with Opt. 2 (minimization
of Su) for S3(x) ∈ R a polynomial of degree 6, resulting in
Su = 100.134.

Finally, we evaluate Prop. 1 and 3 with Opt. 1 selecting, for ins-
tance, Ub =

{
u ∈R | Su = 112 ≥ ‖u‖2}. The results can be seen

in Figure 2, which shows sets XP ⊂Xh, XP ⊂Ub, and the pha-
se portrait in x1–x2 plane of the closed-loop for 10 extreme initial
positions x0 represented by symbol “∗”. Here all trajectories con-
verge to the origin as expected. In addition, Figure 3 illustrates 5
seconds of respective control actions (calculated with (6)), which
are all constrained in Ub. As mentioned in Section 4, we can also
use Prop. 2–3. Table 1 shows a comparison between both Propo-
sitions for x>0 = [0,2] ∈XP, Su = 112. We conclude that Prop. 2
yields better optimization results.

−3 −2 −1 0 1 2 3

−8

−6

−4

−2

0

2

4

x1

x 2

XP
Uc
Xh

Figura 2. Sets XP, Xh, Ub, and phase portrait for 10 extreme initial positions.

Tabla 1. Comparison of Prop. 1, 2 in Sec. 5.1.

Prop. 1, 3 Prop. 2, 3
Opt. 1: det(P) 35.198 41.064
Opt. 2: Su 100.134 87.345

5.2 Third Order Multiple Input System with AS

Now, we consider a third order system given by 1 x1 0
−x1 1 0

0 0 1

ẋ1
ẋ2
ẋ3

=

x2−2x3−2x1x2−2x2
2

x1x2 + u1
x2x3 + u2

 ,
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Figura 3. Response of control signal ub (ub stays in Ub).

with AS using usat-n, i.e. θ1 = θ2. In the controller synthesis ac-
cording to C1–C2, we choose g⊥ = [1,0,0],

Λ>1 =

 0
1
−2

 , Λ2(x) =
[

x2 0 0
0 x3 0

]
, Γ =

 1 x1 0
−x1 1 0

0 0 1

 ,

and z(x) = [x1,x2,x2
2 + x1x2 + x3]> (unimodular ∂ z

∂x ). This exam-
ple is computationally more challenging. Therefore, we select
Sh = diag(100,100,100) and use Prop. 2 as fast indicator (that
Prop. 1 will work), which is met successfully. Then, we take
S1 ∈ R3×3, F20(x),F21(x) ∈ R2×3 and S3(x) ∈ R2×2 with poly-
nomials of degree 2 and 4, respectively, and apply Propositions 1,
3, 4 with Opt. 1 for the user defined7 choice Su = diag(102,82).

For avoiding excessively large ux, we constrain each of the cons-
tant elements of F21 represented by fi j with

∣∣ fi j
∣∣ < 10. The re-

sults are illustrated in Figures 4 and 5. Figure 4 shows the sta-
tes (x1 scaled for clarity) in closed-loop under initial condition
[0,−0.65,0]> = x0 ∈XP ⊂Xh. It is clearly seen that all states
will converge to the origin. Figure 5 illustrates the first second of
usat-n. Note that u2 is saturated, obviously, without compromising
stability. Furthermore, using Prop. 2 in this system gives worse
optimization results, which shows that the selection of the best
Proposition (1 or 2) is system dependent.

6. CONCLUSION

In this paper we provide an algebraic solution for IDA-PBC that
is able to resolve the problem of actuator saturation. To this end,
we restrict the design to a class of polynomial systems that yield
conditions which are solvable with SOS and SDP. The presented
algorithm requires the following steps:

S1 Select Λ1, Λ2, z, g⊥ and h.

S2 Define Su and calculate ub with Propositions 1 (or 2), 3 and
Opt. 1 to maximize the volume of XP. The minimum Su can
also be calculated with Opt. 2.

7The minimum Su can be found similarly as in Example 5.1.

0 1 2 3 4 5

−0.8

−0.6

−0.4

−0.2

0

time (s)

x

7x1
x2
x3

Figura 4. States with x0 = [0,−0.65,0]> for the third order system in closed loop.
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Figura 5. Saturated control action usat-n.

S3 Compute uδ with Prop. 4 and P, F2 found in S2.

S4 Implement the saturation functions usat-i or usat-n.

Additionally, we enjoy features as: no need to solve a PDE, dissi-
pation in design, and one step IDA-PBC. Simulations of two poly-
nomial example systems validate our approach.
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