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Resumen: Este trabajo demuestra la siguiente conjetura: impulsos, retardos y condiciones no locales, bajo algunos su-
puestos, no destruyen algunas propiedades cualitativas del sistema planteado ya que son intrínsecas a él. Verificamos que
la propiedad de controlabilidad es robusta bajo este tipo de perturbaciones para la ecuación de onda fuertemente amor-
tiguada. Específicamente, demostramos que la capacidad de control interior aproximada de la ecuación de onda lineal
fuertemente amortiguada no se destruye si agregamos impulsos, condiciones no locales y una perturbación no lineal con
retraso en estado. Esto se hace mediante el uso de nuevas técnicas evitando teoremas de punto fijo empleado por A.E.
Bashirov et al. En este caso el retardo nos ayuda a probar la capacidad de control aproximada de este sistema al retirar la
solución de control a una curva fija en un corto intervalo de tiempo, y desde esta posición, podemos alcanzar una vecin-
dad del estado final en el tiempo τ utilizando que la ecuación de onda lineal fuertemente amortiguada correspondiente es
aproximadamente controlable en cualquier intervalo {t0,τ},0 < t0 < τ .

Palabras claves: controlabilidad aproximada interior, impulsos, ecuación de onda semilineal fuertemente amortiguada,
retrasos, condiciones no locales, semigrupos fuertemente continuos.

Robustness of the controllability for the strongly damped wave
equation under the influence of impulses, delays and nonlocal

conditions
Abstract: This work proves the following conjecture: impulses, delays, and nonlocal conditions, under some assum-
ptions, do not destroy some posed system qualitative properties since they are themselves intrinsic to it. we verified that
the property of controllability is robust under this type of disturbances for the strongly damped wave equation. Speci-
fically, we prove that the interior approximate controllability of linear strongly damped wave equation is not destroyed
if we add impulses, nonlocal conditions and a nonlinear perturbation with delay in state. This is done by using new
techniques avoiding fixed point theorems employed by A.E. Bashirov et al. In this case the delay help us to prove the
approximate controllability of this system by pulling back the control solution to a fixed curve in a short time interval,
and from this position, we are able to reach a neighborhood of the final state in time τ by using that the corresponding
linear strongly damped wave equation is approximately controllable on any interval {t0,τ},0 < t0 < τ .

Keywords: interior approximate controllability, impulses, semilinear strongly damped wave equation, delays, nonlocal
conditions, strongly continuous semigroups

1. INTRODUCTION

In this paper, we study the interior approximate controllability of
the following strongly damped semilinear wave equations under
the influence of impulses, delays and nonlocal conditions; without
using fixed point Theorem

w′′+η(−∆)1/2w′+ γ(−∆)w = 1ω u(t,x)+ f (t,w,w′,w(t− r1), . . . ,w(t− rm),
w′(t− r1) . . . ,w′(t− rm),u(t,x)) in Ωτ

(1)


w(t,x) = 0, on Ω∂ ,
w(s,x)+ h1(w(τ1 + s,x), . . . ,w(τq + s,x)) = φ1(s,x),
w′(s,x)+ h2(w′(τ1 + s,x), . . . ,w′(τq + s,x)) = φ2(s,x), in Ω−r
w′(t+k ,x) = w′(t−k ,x)+ Ik(tk ,w(tk ,x),w′(tk ,x),u(tk ,x)), k = 1, . . . , p.

(2)

In the space Z1/2 = D((−∆)1/2) × L2(Ω) where w′ = ∂w
∂ t ,

w′′ = ∂ 2w
∂ t2 , Ω ⊂ RN , N ≥ 1 is a bounded domain, γ and η are

positive numbers.
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Along with Dirichlet boundary condition. where ∆ denotes de
Laplacian operator, Ω is a bounded domain in RN (N ≥ 1), ∂ Ω
denotes the boundary of Ω, Ωτ = (0,τ ]×Ω, Ω∂ = (0,τ)×∂ Ω,
Ω−r = [−r,0]×Ω, ω is an open nonempty subset of Ω, 1ω

denotes the characteristic function of the set ω , the distributed
control u belongs to L2([0,τ ];L2(Ω)), φi : [−r,0]×Ω −→ R,
i = 1,2, are continuous functions, 0 < r1 < .. . < rm < r are the
delays and 0 < τ1 < .. . < τq < τ .

From now on, we shall assume the following hypotheses:

H1) The functions Ik : [0,τ ]×R×R×R−→R, k = 1, . . . , p, f :
[0,τ ]×R×R×Rm×Rm×R−→R, and hi : Rq −→R, i =
1,2 are smooth enough, such that the above problem admits
maild solutions according with Leiva Hugo and Sundar P.
(2017); Leiva Hugo (2018).

H2) The following estimates hold:

| f (t,ξ0,ϑ0,ξ1, . . . ,ξm,ϑ1, . . . ,ϑm,u)| ≤ ρ

(√
m

∑
l=0

(|ξl |ρl + |ϑl |ρl )

)
, u,ξl ,ϑl ∈R.,

(3)

where ρ : R+→ [0,∞) is a continuous and increasing function. In
particular, ρ could be given by

ρ(w) = a0wβ + b0, w > 0,β > 0,a0,> 0.

Moreover,

y(tk,x) = y(t+k ,x) = lı́m
t→t+k

y(t,x), y(t−k ,x) = lı́m
t→t−k

y(t,x).

To set this problem, we shall choose the following natural Banach
space:

PCt1..tP ([−r,τ ];Z1/2) = { z : J = [0,τ ]→ Z1/2 : z ∈C(J′;Z1/2),∃z(t+k , ·),z(t−k , ·) and
z(tk , ·) = z(t+k , ·)},

J′ = [−r,τ ]\{t1, t2, . . . , tp} endowed with the norm ‖z‖ =
supt∈[−r,τ ] ‖z(t, ·)‖Z1/2 , where z = (w,v)> = (w,wt)> and

‖z‖Z1/2 =

(∫
Ω
(
∥∥∥(−∆)1/2w

∥∥∥2
+ ‖v‖2)dx

)1/2

, for all z ∈ Z1/2.

Remark 1. It is clear that PCt1..tP([−r,τ ];Z1/2) is a closed linear
subspace of the Banach space of all piecewise continuous fun-
ctions PC([−r,τ ];Z1/2) with the supreme norm, which implies
that PCt1..tP([−r,τ ];Z1/2) is a Banach space with the same norm.

We note that the interior controllability of the following strongly
damped wave equation without impulses, delays and nonlocal
conditions w′′+η(−∆)1/2w′+ γ(−∆)w = 1wu(t,x), in (0,τ ]×Ω,

w = 0, on (0,τ)×∂ Ω,
w(0,x) = w0(x) w′(0,x) = w1(x), in Ω

(4)

has been proved in Larez H., Leiva Hugo and Rebaza J. (2012),
where the abstract formulation is done using fractional powered
spaces, some ideas are taken from it to study this present problem.
Finally, the approximate controllability of the system (1) follows
from the approximate controllability of the linear system (4) in
any interval of the form [τ − δ ,τ ], with 0 < δ < τ , and using
a new technique avoid fixed point theorems by applying in
(Bashirov A.E. and Ghahramanlou N. (2013)), (Bashirov et al.
(2007)), (Bashirov A.E. and Mahmudov N.I. (1999)).

There are many practical examples of impulsive control systems,
a chemical reactor system, a financial system with two state
variables, the amount of money in a market and the savings
rate of a central bank; and the growth of a population diffusing
throughout its habitat modeled by a reaction-diffusion equation.
One may easily visualize situations in these examples where
abrupt changes such as harvesting, disasters and instantaneous
stocking may occur. These problems are modeled by impulsive
differential equations, and for more information see the mono-
graphs, (Lakshmikantham V., Bainov D. D. and Simeonov P.S.
(1989)) and (Samoilenko A. M. and Perestyuk N.A. (1995)).

The controllability of Impulsive Evolution Equations has been
studied recently for several authors, but most them study the
exact controllability only, to mention: (Chalishajar D. N. (2011)),
studied the exact controllability of impulsive partial neutral
functional differential equations with infinite delay and (Selvi S.
and Mallika Arjunan M. (2012)) studied the exact controllability
for impulsive differential systems with finite delay.

To our knowledge, there are a few works on approximate
controllability of impulsive semilinear evolution equations, to
mention: (Chen L. and Li G (2010)) studied the Approximate
controllability of impulsive differential equations with nonlocal
conditions, using measure of noncompactness and Monch’s fixed
point theorem, and assuming that the nonlinear term f (t,z) does
not depend on the control variable.

Recently, in Leiva Hugo (2014a,b); Leiva Hugo and Merentes
N. (2015); Leiva Hugo (2015) the approximate controllability
of semilinear evolution equations with impulses has been studied
applying Rothe’s Fixed Point Theorem. Also, there are many pa-
pers on evolution equations with impulses and delay or with im-
pulses and nonlocal conditions or with local conditions and delays,
where not only the controllability is studied, but also other aspects
are studied, such as the existence of mild solutions, synchroniza-
tion, stability, etc. To mention, we have the following references:
Chalishajar D. N. (2011); Chen L. and Li G (2010); Chiu K. and
Li T. (2019); Guevara C. and Leiva H. (2016); Guevara C. and
Leiva H. (2017); Jiang C., Zhang F. and Li Tongxing (2018); Lei-
va Hugo and Rojas Raul (2016); Li Tongxing, Pintus Nicola and
Viglialoro Giuseppe (2019); Liang Jin, Liu James H. and Xiao
Ti-Jun (2009); Qina Haiyong et al. (2017); Quin Haiyong et al.
(2017); Selvi S. and Mallika Arjunan M. (2012).
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2. ABSTRACT FORMULATION OF THE PROBLEM.

In this section, we choose a Hilbert space where system (1) can
be written as an abstract differential equation; to this end, we shall
use the following notations:
Let X =U = L2(Ω) = L2(Ω,R) and consider the linear unboun-
ded operator A : D(A) ⊂ X −→ X defined by

Aϕ = −∆ϕ , where D(A) = H2(Ω,R)∩H1
0 (Ω,R).

The fractional powered spaces Xα (see details in Larez H., Leiva
Hugo and Rebaza J. (2012)) are given by

Xα = D(Aα ) =

{
x ∈ X :

∞

∑
n=1

λ
2α
n ‖Enx‖2 < ∞

}
,

endowed with the norm

‖x‖
α
= ‖Aα x‖=

(
∞

∑
n=1

λ
2α
n ‖Enx‖2

)1/2

,

where {E j} is a family of complete orthogonal projections in X ;
and for the Hilbert sapce Zα = Xα ×X the corresponding norm is∥∥∥∥( w

v

)∥∥∥∥
Zα

=
√
‖w‖2

α
+ ‖v‖2.

Proposition 1. Given j ≥ 1, the operator Pj : Zα −→ Zα defined
by

Pj =

[
E j 0
0 E j

]
(5)

is a continuous (bounded) orthogonal projections in the Hilbert
space Zα .
Hence, the equation (1) can be written as an abstract second order
ordinary differential equation in X as


w′′+ηA1/2w′+ γAw = Bω u+ f e(t,w(t),w′(t),wt (−r1), . . . ,wt (−rm),

w′t (−r1), . . . ,w′t (−rm),u(t)), t ∈ (0,τ ], t 6= tk .
w(s)+ g1(wτ1 , . . . ,wτq )(s) = φ1(s)
w′(s)+ g2(wτ1 , . . . ,wτq )(s) = φ2(s), s ∈ [−r,0]
w′(t+k ) = w′(tk)+ Ie

k (tk ,w(tk),w′(tk),u(tk)), k = 1, . . . , p,
(6)

where

Ie
k : [0,τ ]×Z1/2×U −→ X

(t,w,v,u)(·) 7−→ Ik(t,w(·),v(·),u(·)),

f e : [0,τ ]×Z1/2×Cm([−r,0];Z1/2)×Cm([−r,0];Z1/2)×U −→ X

(t,w,v,ϕ1, . . . ,ϕm,ψ1, . . . ,ψm,u)(·) 7−→ f (t,w(·),v(·),ϕ1(−r1, ·), . . .ϕ(−rm, ·, )
ψ1(−r1, ·), . . . ,ψm(−rm, ·),u(·)),

Bω : U −→ U
u(·) 7−→ 1ω u(·),

gi : Cq([−r,0];X) −→ C([−r,0];Z1/2)
gi(ϕ1, . . . ,ϕq)(s, ·) 7−→ hi(ϕ1(s, ·), . . . ,ϕq(s, ·)), i = 1,2.

A change of variable v = w′ transforms the second order equa-
tion (6) into the following first order system of ordinary differen-
tial equations with impulses, delays and nonlocal conditions in the
space Z1/2.


z′ = Az+Bω +F (t,z(t),zt(−r1), . . . ,zt(−rm),u), t 6= tk,
z(s)+ g(zτ1 , . . . ,zτq)(s) = φ (s), s ∈ [−r,0],
z(t+k ) = z(t−k )+Ik(tk,z(tk),u(tk)), k = 1, . . . ,q,

(7)
where u∈C([0,τ ],U), z= (w,v)>, φ = (φ1,φ2)> ∈C([−r,0],X),
zt defined as a function from [−r,0] to Z1/2 by zt(s) = z(t +
s),−r ≤ s≤ 0,

A =

[
0 IX

−γA −ηA1/2

]
is an unbounded linear operator with domain D(A) = D(A)×
D(A1/2), IX represents the identity in X ,

Bω : U −→ Z1/2

u 7−→ (0,Bω u)>,

Ik [0,τ ]×Z1/2×U −→ Z1/2

(t,z,u) 7−→ (0, Ie
k (t,w,v,u))>,

F : [0,τ ]×Z1/2×Cm([−r,0],Z1/2)×U −→ Z1/2

(t,z,φ 1, . . . ,φ m,u) 7−→
(

0
f e(t,w,v,φ 1

1 (−r1), . . . ,φ m
1 (−rm),φ 1

2 (−r1), . . . ,φ m
2 (−rm),u)

)
,

and

g : Cq([−r,0];X) −→ C([−r,0];X)×C([−r,0];X)

g(φ 1, . . . ,φ q)(s, ·) 7−→
(

g1(φ 1
1 (s, ·), . . . ,φ q

1 (s, ·)
g2(φ 1

2 (s, ·), . . . ,φ q
2 (s, ·)

)
Definition 1. (Approximate Controllability) The system (7) is
said to be approximately controllable on [0,τ ] if for every φ =
(φ1,φ2) ∈C([−r,0];Z 1/2), z1 ∈ Z1/2 and ε > 0, there exists u ∈
C([0,τ ];L2(Ω)) such that the solution z(t) of (1) corresponding
to u verifies:

z(0)+ h(zτ1 , . . . ,zτq)(0) = φ (0), and
∥∥z(τ)− z1∥∥

Z1/2 < ε .

The hypotheses H1) and H2), together with the continuous inclu-
sion X1/2 ⊂ X , yield

Proposition 2. The function F satisfies the following inequality:

‖F (t,z,φ1, ..,φm,u)‖Z 1/2 ≤ σ

(
‖z‖Z 1/2 +

m

∑
l=1
‖φl(−rl)‖

)
, (8)

where σ : R+→ [0,∞) is a continuous function

It is well known that the operator A generates a strongly conti-
nuous semigroup {T (t)}t≥0 in the space Z1/2, which is also analy-
tic. Furthermore, Lemma 2.1 in Leiva Hugo (2003) yields

Proposition 3. The semigroup {T (t)}t≥0 generated by the opera-
tor A is compact and has the following representation

T (t)z =
∞

∑
j=1

eA jtP,z, z ∈ Z1/2, t ≥ 0, (9)

where {Pj} j≥0 is a complete family of orthogonal projections in
the Hilbert space Z1/2 given by (5) and
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A j = R jPj, R j =

[
0 1
−γλ j −ηλ

1/2
j

]
, j ≥ 1.

Moreover, eA jt = eR jtPj, the eigenvalues of R j are

λ = −l1/2
j

(
η±

√
η2−4γ

2

)
, j = 1,2, . . . ,

A∗j = R jPj, R∗j =
[

0 −1
γλ j −ηλ

1/2
j

]
.

and
‖T (t)‖ ≤M(η ,γ)e−β t , t ≥ 0,

where

β = λ
1
2

1 mı́n

{
Re

(
η±

√
η2−4γ

2

)}

3. APPROXIMATE CONTROLLABILITY OF THE LINEAR
SYSTEM

In this section, we shall characterize the approximate contro-
llability of the linear system. To this end, for all z0 ∈ Z1 and
u ∈ L2([0,τ ];U) the initial value problem z′(t) = Az(t)+Bω u(t), z ∈ Z1/2,

z(t0) = z0,
(10)

admits only one mild solution given by

z(t) = T (t− t0)z0 +
∫ t

t0
T (t− s)Bω u(s)ds; t ∈ [t0,τ ], 0≤ t0 ≤ τ .

(11)

Definition 2. For the system (10) we define the following concept:
The controllability map (for τ > 0) Gτδ : L2([τ − δ ,τ ];U) −→
Z1/2 is defined by

Gτδ u =
∫

τ

τ−δ

T (τ− s)Bω u(s)ds, (12)

whose adjoint operator G∗
τδ

is

G∗
τδ

: Z1/2 −→ L2([τ−δ ,τ ];U)

is given by

(G∗
δ

z)(s) = B∗ω T (τ)z, ∀s ∈ [0,δ ], ∀z ∈ Z1/2. (13)

The Gramian controllability operator is defined as:

Qτδ = Gτδ G∗
τδ

=
∫

τ

τ−δ

T (τ− s)BωB∗ω T ∗(τ− s)u(s)ds. (14)

The following lemma holds in general for a linear bounded ope-
rator G : W −→ Z between Hilbert spaces W and Z (see Cur-
tain R.F. and Pritchard A.J. (1978), Curtain R.F. and Zwart H.J.
(1995) and Leiva Hugo, Merentes N. and Sanchez J. (2012)).

Lemma 1. The following statements are equivalent to the appro-
ximate controllability of the linear system (10) on [τ−δ ,τ ]

1. Rang(Gτδ ) = Z1/2.

2. ker(G∗
τδ
) = 0.

3. 〈Qτδ z,z〉> 0, z 6= 0 in Z1/2.

The following Theorem is a characterization of the approximate
controllability of the system (10):

Theorem 1. (see Bashirov et al. (2007), Bashirov A.E. and Mah-
mudov N.I. (1999), Curtain R.F. and Pritchard A.J. (1978),Cur-
tain R.F. and Zwart H.J. (1995) and Leiva Hugo, Merentes N. and
Sanchez J. (2012)) The system (10) is approximately controllable
on [0,τ ] if, and only if, any one of the following conditions hold:

1. lı́mα→0+ α(αI +Q∗
τδ
)−1z = 0.

2. For all z∈ Z1/2 we have Gτδ uα = z−α(αI+Qτδ )
−1z, whe-

re
uα = G∗

τδ
(αI +Q∗

τδ
)−1z, α ∈ (0,1].

3. Moreover, if we consider for each v ∈ L2([τ − δ ,τ ];U), the
sequence of controls given by

uα =G∗
τδ
(αI+Q∗

τδ
)−1z+(v−G∗

τδ
(αI+Q∗

τδ
)−1Gτδ v), α ∈ (0,1]

we get that:

Gτδ uα = z−α(αI +Q∗
τδ
)−1(z−Gτδ v)

and
lı́m

α−→0
Gτδ uα = z,

with the error Eτδ z of this approximation is given by

Eτδ z = α(αI +Qτδ )
−1(z+Gτδ v), α ∈ (0,1].

Remark 2. The Theorem 1 implies that the family of linear opera-
tors Γτδ : Z1/2 −→ L2([τ−δ ,τ ];U) defined for 0≤ α ≤ 1 by

Γτδ z = G∗
τδ
(αI +Q∗

τδ
)−1z,

satisfies the following relation

lı́m
α−→0

Gτδ Γτδ = I

in the strong topology.

Since the controllability of the linear system (10) was prove in
Carrasco A., Leiva H. and Sanchez J.L. (2013), on [0,τ ] for all
τ > 0, we get the following characterization for the approximate
controllability of (10).

Lemma 2. Qτδ > 0 if, and only if, the linear system (10) is con-
trollable on [τ − δ ,τ ]. Moreover, given an initial state y0 and a
final state Z1/2 we can find a sequence of controls {uδ

α}0<α≤1 ⊂
L2(τ−δ ,τ;U)

uα = G∗
τδ
(αI +Gτδ G∗

τδ
)−1(z1−T (τ)y0), α ∈ (0,1],

such that the solutions y(t) = y(t,τ−δ ,y0,uδ
α ) of the initial value

problem {
y′ = Ay+Bω uα (t), y ∈ Z1/2, t > 0,
y(τ−δ ) = y0,

(15)
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satisfies
lı́m

α→0+
y(τ ,τ−δ ,y0,uα ) = z1.

e.i.,

lı́m
α→0+

y(τ) = lı́m
α→0+

{
T (δ )y0 +

∫
τ

τ−δ

T (τ− s)Buα (s)ds
}
= z1.

4. THE SYSTEM WITH IMPULSES, DELAYS AND NONLOCAL
CONDITIONS

In this section, we shall prove the main result of this paper, the in-
terior approximate controllability of the semilinear strongly dam-
ped wave equation with impulses, delays and nonlocal condi-
tions given by (1), which is equivalent to prove the approximate
controllability of the system (7). To this end, for all φ ∈ C and
u ∈ C([0,τ ];U) the initial value problem, according with the re-
cent work from Leiva Hugo and Sundar P. (2017); Leiva Hugo
(2018),


z′ = Az+Bω u+F (t,z(t),zt (−r1),zt (−r2), . . . ,zt (−rm),u), t ∈ (0,τ ],

z(s)+ g(zτ1 ,zτ2 , . . . ,zτq )(s) = φ (s), s ∈ [−r,0],

z(t+k ) = z(t−k )+Ik(tk ,z(tk),u(tk)), k = 1,2,3, . . . , p.
(16)

admits only one mild solution z ∈ PCt1..tP([−r,τ ];Z1/2) given by

z(t) = T (t)φ (0)−T (t)[(g(zt1 , . . . ,ztq ))(0)]+
∫ t

0
T (t− s)Bω u(s)ds(17)

+
∫ t

0
T (t− s)F (s,z(s),zs(−r1),zs(−r2), . . . ,zs(−rm),u(s))ds

+ ∑
0<tk<t

T (t− tk)Ik(tk ,z(tk),u(tk)), t ∈ [0,τ ],

z(t) + (g(zτ1 , . . . ,zτq ))(t) = φ (t), t ∈ [−r,0].

Now, we are ready to present and prove the main result of this pa-
per, which is the interior approximate controllability of the semi-
linear strongly damped wave equation with impulses, delays and
nonlocal conditions (16).

Theorem 2. If the functions f , Ik,h are smooth enough, condition
(8) holds, and since the linear system (10) is approximately con-
trollable on any interval [τ−δ ,τ ], 0 < δ < τ , then system (16) is
approximately controllable on [0,τ ].

Demostración. . Given φ ∈C, a final state z1 and ε > 0, we want
to find a control uδ ∈ L2(0,τ;U) steering the system to z1 on
[τ−δ ,τ ]. Precisely, for 0 < δ < min{τ− tp,r} small enough, the-
re exists control uδ ∈ L2(0,τ;U) such that corresponding of solu-
tions zδ of (16) satisfies∥∥∥zδ (τ)− z1

∥∥∥< ε .

In fact, we consider any fixed control u ∈ L2(0,τ;U) and the
corresponding solution z(t) = z(t,0,φ ,u) of the problem (16).
For 0 < δ < min{τ − tp,r} small enough, we define the control
uδ ∈ L2(0,τ;U) as follows

uδ (t) =
{

u(t), if 0≤ t ≤ τ−δ ,
vδ (t), if τ−δ < t ≤ τ .

where

vδ (t) = B∗ω T ∗(τ− t)(αI +Gτδ G∗
τδ
)−1(z1−T (δ )z(τ−δ )), τ−δ < t ≤ τ .

Since 0 < δ < τ − tp, then τ − δ > tp, the corresponding solution zδ (t) =

z(t,0,φ ,uδ ) of the nonlocal Cauchy problem (16) at time τ can be written as fo-
llows:

zδ (τ) = T (τ)φ (0)−T (τ)[(g(zτ1 , . . . ,zτq )(0)]+
∫

τ

0
T (τ− s)B(s)uδ (s)ds

+
∫

τ

0
T (τ− s)F (s,zδ (s),zδ

s (−r1),zδ
s (−r2), . . . ,zδ

s (−rm),u(s))

+ ∑
0<tk<τ

T (τ− tk)Ik(tk ,z(tk),uδ (tk))

= T (δ )

{
T (τ−δ )φ (0)−T (τ−δ )[(g(zτ1 , . . . ,zτ1 ))(0)]

+
∫

τ−δ

0
T (τ−δ − s)Bω (s)(s)uδ (s)ds

+
∫

τ−δ

0
T (τ−δ − s)F (s,zδ (s),zδ

s (−r1),zδ
s (−r2), . . . ,zδ

s (−rm),u(s))ds

+ ∑
0<tk<τ−δ

T (τ−δ − tk)Ie
k (tk ,zδ (tk),uδ (tk))

}
+
∫

τ

τ−δ

T (τ− s)Bω (s)uδ (s)ds

+
∫

τ

τ−δ

T (τ− s)F (s,zδ (s),zδ
s (−r1),zδ

s (−r2), . . . ,zδ
s (−rm),u(s))ds

= T (δ )z(τ−δ )+
∫

τ

τ−δ

T (τ− s)Bω (s)vδ (s))ds

+
∫

τ

τ−δ

T (τ− s)F (s,zδ (s),zδ
s (−r1),zδ

s (−r2), . . . ,zδ
s (−rm),vδ (s))ds.

So,

zδ (τ) = T (δ )z(τ−δ )+
∫

τ

τ−δ

T (τ− s)Bω (s)vδ (s)ds

+
∫

τ

τ−δ

T (τ− s)F (s,zδ (s),zδ
s (−r1),zδ

s (−r2), . . . ,zδ
s (−rm),vδ (s))ds.

T hecorrespondingsolution

yδ (t) = y(t,τ − δ ,z(τ − δ ),vδ ) of the initial value problem (10)
at time τ , for the control vδ and the initial condition z0 = z(τ−δ ),
is given by:

yδ (τ) = T (δ )z(τ−δ )+
∫

τ

τ−δ

T (τ− s)Bω (s)vδ (s)ds,

and from Lemma 2, we get a solution of the linear initial value
problem (10) such that

‖yδ (τ)− z1‖< ε

2

Therefore,

∥∥∥zδ (τ)− z1)
∥∥∥≤ ε

2
+
∫

τ

τ−δ

‖T (τ− s)‖
∥∥∥F (s,zδ (s),zδ

s (−r1),zδ
s (−r2), . . . ,zδ

s (−rm),vδ (s))
∥∥∥ds.

Now, since 0 < δ < r and τ−δ ≤ s≤ τ , then s−r≤ τ−r < τ−δ

and
zδ (s− r) = z(s− r).

Hence, there exists δ small enough such that 0 < δ < mı́n{r,τ−
tp} and

∥∥zδ (τ)− z1
∥∥≤ ε

2 +
∫

τ

τ−δ

‖T (τ− s)‖
∥∥∥F (s,z(s),zs(−r1),zs(−r2), . . . ,zs(−rm),vδ (s))

∥∥∥ds

≤ ε

2 +
∫

τ

τ−δ

‖T (τ− s)‖σ

(
‖z(s)‖

Z 1/2 +
m

∑
l=1
‖zs(−rl)‖

)
‖ds <

ε

2
+

ε

2
= ε .

This completes the proof of the Theorem.
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5. FINAL REMARK

Our methodology is simple and can be applied to those second
order diffusive processes with impulses, delays and nonlocal
conditions like some control system governed by partial diffe-
rential equations. For example, the Benjamin -Bona-Mohany
Equation with impulses, delays and nonlocal conditions, the beam
equations with impulses, delays and nonlocal conditions, etc.

Moreover, some of these particular problems can be formulated
in a more general setting. Indeed, we can consider the following
semilinear evolution equation in a general Hilbert space Z1/2

z′ = Az+B+F (t,zt ,u(t)), t 6= tk,
z(s)+ g(zτ1 , . . . ,zτq)(s) = φ (s), s ∈ [−r,0],
z(t+k ) = z(t−k )+Ik(tk,z(tk),u(tk)), k = 1, . . . ,q,

(18)

where u∈C([0,τ ],U), z= (w,v)>, φ = (φ1,φ2)> ∈C([−r,0],X),
zt defined as a function from [−r,0] to Z1/2 by zt(s) = z(t +
s),−r ≤ s≤ 0

A =

[
0 IX

−γA −ηA1/2

]
is an unbounded linear operator with domain D(A) = D(A)×
D(A1/2), IX represents the identity in X , and A : D(A) ⊂ X → Z
is an unbounded linear operator in X with the following spectral
decomposition:

Ax =
∞

∑
j=1

λ j

γ j

∑
k=1

< x,φ j,k > φ j,k,

with the eigenvalues 0 < λ1 < λ2 < · · · < · · ·λn→ ∞ of A having
finite multiplicity γ j equal to the dimension of the corresponding
eigenspaces, and {φ j,k} is a complete orthonormal set of eigen-
functions of A. The operator −A generates a strongly continuous
compact semigroup {TA(t)}t≥0 given by

TA(t)x =
∞

∑
j=1

e−λ jt
γ j

∑
k=1

< x,φ j,k > φ j,k.

We shall denote by C the space of continuous functions:

C = {φ : [−r,0]→ Z1/2 : φ is continuous},

endowed with the norm

‖φ‖C = sup
−r≤s≤0

‖φ (s)‖Z1/2 .

The control u ∈ C(0,τ;U), with U = Z, B : X → U is a linear
and bounded operator(linear and continuous) and the functions Ie

k :
[0,τ ]×Z×U → Z, F : [0,τ ]×C×U → Z satisfies the following
inequalities:

‖F (t,φ ,u)‖Z 1/2 ≤ σ (‖φ‖C) , (19)

where σ : R+→ [0,∞) is a continuous function.
In this case the characteristic function set is a particular operator
B, and the following theorem is a generalization of Lemma 2.

Theorem 3. If vectors B∗φ j,k are linearly independent in Z1/2,
then the system (18) is approximately controllable on [0,τ ].

6. CONCLUSION

In this work, we prove the interior approximate controllability of
the strongly damped equation with impulses, delays and nonlocal
conditions by using a new technique avoid fixed point theorems
applying by Bashirov A.E. and Ghahramanlou N. (2013),
Bashirov et al. (2007), Bashirov A.E. and Mahmudov N.I. (1999).
After that, we present some open problems and a possible general
framework to study the controllability of semilinear second order
diffusion process in Hilbert spaces with impulses, delays and
nonlocal conditions. The novelty in this paper is that the literature
of control systems with impulses, delays and nonlocal conditions
is very short, there are a very few numbers of papers on systems
with impulses, delays and nonlocal conditions simultaneously.
That is to say, control systems governed by partial differential
equations with impulses, delays and nonlocal conditions have not
been studied much.
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