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Resumen: El propósito de este trabajo es presentar un nuevo esquema de control robusto basado en un modelo no-lineal
aplicado a un sistema de péndulo invertido rotacional. El péndulo rotacional está compuesto por un brazo mecánico unido
a un péndulo de movimiento libre (ortogonal al brazo), conocido como el péndulo Furuta. En principio, un controlador
Fuzzy permite que la barra del brazo robótico levante el péndulo giratorio a través del movimiento oscilatorio y alcance
automáticamente la posición de equilibrio superior en un rango de operación de estabilización prescrito. Después de que
el péndulo alcanza el rango de operación, un sistema de conmutación inteligente permite la transición entre el controlador
basculante y un controlador predictivo robusto para mantener la posición angular del péndulo alrededor de la posición
vertical ascendente. Para lograr un desempeño robusto, un marco centralizado del controlador propuesto combina un tres
acciones de control. El primero compensa las perturbaciones utilizando la trayectoria de regulación - control de adelanto.
La segunda acción de control corrige los errores producidos por la discrepancia de modelado. El tercer controlador ase-
gura robustez en el sistema de lazo cerrado mientras compensa las desviaciones de las trayectorias de estado con respecto
a las nominales (es decir, sin perturbaciones). La estrategia de control proporciona factibilidad robusta a pesar de que las
restricciones en la barra del brazo y los actuadores del péndulo son alcanzadas. Dichas restricciones se calculan en línea
en base a conjuntos robustos positivamente invariantes caracterizados por conjuntos politópicos (tubos). El controlador
propuesto se prueba en una serie de pruebas de simulación y se valida de forma experimental en un entorno de simulación
de alta fidelidad que incluye un péndulo invertido giratorio construido con fines educativos. Los resultados muestran que
el rendimiento de control robusto se fortalece frente a perturbaciones del sistema de lazo cerrado en comparación con la
de los controladores predictivos lineales y no lineales inherentemente robustos.
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Intelligent Swing-Up and Robust Stabilization via Tube-based
Nonlinear Model Predictive Control for A Rotational

Inverted-Pendulum System
Abstract: The purpose of this paper is to introduce a new robust nonlinear model-based predictive control scheme ap-
plied to a rotational inverted-pendulum system. The rotational pendulum is composed by a mechanical arm attached to
a free-motion pendulum (orthogonal to the arm), namely Furuta Pendulum. In principle, a Fuzzy controller enables the
robotic arm bar to lift the rotational pendulum through oscillatory swing-up motion up to automatically achieve the up-
per equilibrium position in a prescribed stabilizing operation range. After the pendulum reaches the operating range, an
intelligent control bypass system allows the transition between the swing-up motion controller and a robust predictive
controller to maintain the angular position of the pendulum around the upward critical position. To achieve robust perfor-
mance, a centralized control framework combines a triplet of control actions. The first one compensates for disturbances
using the regulation trajectory feedforward control. The second control action corrects errors produced by modelling
mismatch. The third controller assures robustness on the closed-loop system whilst compensating for deviations of the
state trajectories from the nominal ones (i.e, disturbance-free). The control strategy provides robust feasibility despite
constraints on the arm bar and pendulum’s actuators are met. Such constraints are calculated on-line based on robust po-
sitively invariant sets characterised by polytopic sets (tubes). The proposed controller is tested in a series of simulations,
and experimentally validated on a high-fidelity simulation environment including a rotational inverted-pendulum built
for educational purposes. The results show that robust control performance is strengthened against disturbances of the
closed-loop system benchmarked to inherently-robust linear and nonlinear predictive controllers.
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1. INTRODUCTION

The underactuated mechanical systems, consisting of a fewer
number of actuators than degrees-of-freedom (DOF) to control,
have been widely studied in diverse application fields such as
terrestrial mobile robotics, marine engineering, and aerospace
engineering to name a few (see Scalera et al. (2020); Duan et al.
(2020); Hao et al. (2013) and their references). For instance, the
rotary inverted-pendulum (RIP) system has been widely used as
a suitable prototype in the educational area due to its reduced
complexity, high practicality and tractability Hernandez-Guzman
et al. (2016). The RIP system, also known as Furuta pendulum
system in recognition to its original designer Furuta et al. (1992),
is a well-known underactuated mechanism extensively used by
several researchers to assess control performance and validate
linear and nonlinear control techniques Estupinan et al. (2017).
The mechanism comprises a two-degree-of-freedom system with
a single actuator that provides the motor torque input to the base
arm of the system. In this way, the arm rotating in the horizontal
plane enables the mechanically attached pendulum to freely
rotate in the vertical plane. The vertical motion of the pendulum
depends on the horizontal motion of the base arm; therefore, the
objective of the system is to stabilize the pendulum in the unstable
vertical position varying the torque input applied to the arm.

To achieve a proper behaviour in the stabilization of the vertical
position of a RIP, three-stage control approaches are generally
required to fully cover the motion phases Muskinja and To-
vornik (2006). These phases usually comprise: i) swing-up, ii)
stabilization, and iii) trajectory tracking. The first phase consists
on balancing the RIP through controlled oscillations from the
resting state until reaching the upward position, and then keep
the rotating base fixed. Once the pendulum oscillates within a
range of vertical stabilization, the regulation problem must be
covered by the control framework within a second phase in order
to maintain the rotatory pendulum at the upward unstable position
against external or internal disturbances. Then, the third phase
enables the base arm to track a prescribed reference trajectory;
meanwhile, the system is vertically stabilized by the effect of the
arm rotation and pendulum inertia. This work addresses the three
aforementioned control objectives regarding swing-up, robust
stabilization, and trajectory tracking against disturbances.

As the RIP system has under-actuated degrees-of-freedom of
the joint between the rotational base and the pendulum arm,
many conventional control strategies developed for fully actuated
systems cannot be directly applied due to the strong mechanical
coupling Kharola et al. (2016). Unlike traditional energy-based,
model-free, adaptive, neural networks, genetic and other classical
control algorithms Fantoni and Lozano (2002); Tanaka et al.
(2011); Mandic et al. (2014); Delibasi et al. (2007); Kennedy
et al. (2019), the current literature shows Model Predictive
Control (MPC) framework as a promising technology based on
optimization that has drawn the attention in control applications
for under-actuated and rapid-response mechanisms due to its
simple structure, straightforward design procedure, and robust
properties against system uncertainties and disturbances Ghana-
vati et al. (2011). Compared to other classical optimization-based

methods such as LQR or LMI to deal with piecewise stabilized
dynamics Minouchehr et al. (2015), the MPC approach adopts
optimization methods to correct the current dynamics based on
feedback and predictive behaviour subject to system constraints.
For instance, in Bakarac et al. (2018), it was developed a control
system for stabilization of a prototype RIP based on linear MPC
(LMPC) with simplified Coriolis, centrifugal, and gravity force
model. Although it was reported a favourable control performance
under tests on speed changes of the rotatory base, its degree of
robustness persisted against external disturbances because of the
linear control layout dependency. In Li et al. (2015), a hybrid
LMPC architecture based on a neural network approach was
proposed to address the regulation and tracking phase of a RIP,
in which the lifting speed limitation and constrained actuator
capability were both concerned. In the aforementioned works, the
stabilization phase of the pendulum at the upright equilibrium
position relied only on inherent robust properties of a feedback
control loop.

Due to linear models do not fully capture the dynamic behaviour
of the lifting angle position and angular speed of the RIP arm,
a suitable control performance can hardly be achieved for the
full operating range of a reference trajectory. In general, when a
nonlinear prediction model is linearised around operating points
of the reference, the system dynamics in such points potentially
do not correspond accurately to the true ones either by model
approximations (i.e., model uncertainties) or internal/external
disturbances (i.e., rotatory base inertia or external force exertion).
Consequently, the prediction model mismatch and disturbances
may incur possibly in the evolution of significant prediction errors
and latently in the instability of the closed-loop system Kayacan
and Peschel (2016). Thus, compared to linear control formula-
tions, nonlinear MPC (NMPC) arises as a suitable alternative to
deal with nonlinear dynamics of an inverted pendulum system.

Due to swing-up motion of the RIP is able to take the pendulum
arm close to the stabilization zone by motion transmission of the
rotating base, few works have taken advantage of this phenome-
non to decentralize the control scheme. For example, a recent
hybrid control scheme was proposed with a swing-up motion
control strategy in Wilson et al. (2016), under which a modified
oscillator as reference trajectory was used for lifting, whereas
the stabilization phase with an NMPC controller. This method
may be unattractive because the oscillations required to reach the
stabilization zone were not restricted, thus swinging the pendulum
bar for a long time. On the contrary, in Yue et al. (2018), rapid
swing-up motion (i.e., one-step lift) was achieved employing
a stabilizing adaptive control law taking into account only the
unactuated mechanism, and thus the control law was switched
to a globally stabilizing NMPC controller valid only within a
reduced operating zone without uncertainty and disturbance com-
pensation. The main concern lies in the stabilization phase where
the lifting angle considerably affected the motion performance
in the upward position with relevant oscillatory motion, thus
requiring an intelligent strategy to coordinate swinging-up motion
and robust stabilization of a RIP.

Despite all strengths of NMPC, such as the capability to explicitly
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handle nonlinearities and systematically include constraints in
the control framework, robust performance for the stabilization
of the RIP can only be achieved if a nominal controller (i.e.,
disturbance-free) is inherently robust and estimation errors are
small enough Mayne et al. (2006). Unfortunately, in practice,
inherent robustness properties are not always present in predictive
controllers due to model uncertainties or disturbances Ke et al.
(2018), although a certain degree of robustness could be achieved
due to feedback Gonzalez et al. (2009). To cope with this issue,
robust NMPC designs explicitly account for the error compensa-
tion originated by disturbances or model discrepancies through
corrective control actions Kouvaritakis and Cannon (2015). In
this scenario, tube-based nonlinear MPC (T-NMPC) has shown
to be an efficient synthesis approach to robustify control actions
in a non-deterministic form, whose base focuses on computing
admissible regions characterized by polytopic sets so-called tubes
Mayne et al. (2011).

The contribution of this paper is twofold. The first consists on
introducing a new intelligent swing-up motion approach to balan-
ce the rotatory base of underactuated RIP systems until reaching
the stabilization zone of the pendulum bar. The strategy is based
on assessing the angular speed and position of the pendulum arm
as it approaches the stabilization zone in order to control such
variables using a Fuzzy logic controller. The second contribution
lies in the design of an efficient robust stabilizing and trajectory
tracking controller for RIP systems. To this end, a T-NMPC is
proposed under a centralized control architecture to reach robust
performance of the overall system against disturbances. Firstly, to
represent the pendulum motion, forward equations based on the
Euler-Lagrange form are proposed. Secondly, the design strategy
combines: a) feedforward, b) corrective, and c) tube-based control
actions to provide robust performance guarantee with regard to
tracking errors, actuator effort, and constraint satisfaction under
uncertainties, nonlinearities, and internal/external disturbances.
The control framework adopts the Real-Time Iteration (RTI)
scheme, as the available in the ACADO Toolkit Houska et al.
(2011) to solve efficiently the optimization problem raised in the
NMPC strategy.

The work is organized as follows. First, Section 2 describes the
Euler-Lagrange formalisms, including the mathematical formula-
tion of the proposed nonlinear model for the rotational inverted-
pendulum system. Section 3 presents the swing-up controller ba-
sed on Fuzzy Logic. Section 4 presents the proposed control archi-
tecture with the robust tube-based nonlinear predictive controller.
It is also included the linear predictive controller. Section 5 details
the Fuzzy logic-MPC framework for the intelligent bypass. Sec-
tion 6 describes simulations and experimentations carried out with
the proposed controller. Finally, this document ends in Section 7
with the concluding remarks of this paper.

2. PROBLEM FORMULATION

This section presents the feedforward equations of nonlinear mo-
del that stands out the Rotational Inverted-Pendulum (RIP) system
dynamics, and the problem formulation.

Figura 1. Scheme of the Furuta pendulum under study. The angle θ0 represents the
angular position of the rotatory base; θ1 for the angular position of the pendulum
bar, and θ̇0 and θ̇1 denote their corresponding speeds.

2.1 Feedforward Dynamics of the Rotational Pendulum

An extension of the dynamical nonlinear model for the RIP dyna-
mics is described. The model employed in this work represents the
underactuated pendulum mechanism that connects a horizontal ro-
tating arm with a free-motion pendulum bar, as shown in Fig. 1.
The RIP –Furuta pendulum– is different to conventional pendu-
lum systems because it has fewer unmodelled dynamics Ling et al.
(2002), owing to a motion transmission mechanism since the rota-
tory arm directly couples to the motor shaft. A rotatory pendulum
is considered taking into account the following assumptions:

• The mass of the pendulum bar is considered evenly distribu-
ted along the rotated pendulum shaft.

• The interaction effects between the pendulum bar and rota-
tional arm motion are not neglected.

Under these assumptions, it is considered the inverted-pendulum
system in the Euler-Lagrange form given by:

d
dt

(
dL

dq̇

)
− dL

dq
= Bu (1)

where q = [qa qu]T and q̇ = [q̇a q̇u]T ∈Rn are vectors of genera-
lized coordinates that represent the RIP system (i.e., rotatory base
and pendulum arm position and speeds, respectively); qa and qu
are actuated and unactuated variables, respectively; B ∈ Rn×nu is
the input matrix, and u ∈Rnu is the control input for the RIP sys-
tem. The Lagrangian function L is described by:

L (q, q̇) =
1
2

q̇T M(q)q̇−V (q) (2)

where M(q) is a symmetric positive-definite inertia matrix and
V (q) denotes the potential energy of the system. Replacing the
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function L from ((2)) in the dynamic system ((1)), the motion
model for the RIP can be rewritten as follows:

M(q)q̈+C(q, q̇)+G(q) = Bu+D (3)

where C(q, q̇) stands out the combination of Coriolis, centrifugal,
and friction forces; G(q) represents the gravitational loading vec-
tor, and D = [d0 d1]T assumes to satisfy the model matching con-
dition for uncertainties, disturbance, and non-modelled dynamics
such as viscous and Coulomb forces exerted on the actuated joint.
The system variable q = [θ0 θ1]T and q̇ = [θ̇0 θ̇1]T correspond
to the joint angular position and speeds of the rotatory inverted
pendulum, respectively; θ0 and θ1 denote the angular position of
the rotatory base arm and pendulum bar, respectively. The control
input is represented by u = [τ0 0]T , where τ0 ∈ R is the torque
input applied to the RIP base arm. Each matrix that represents the
dynamic system in ((3)) can be described as follows:

M(q) =
[

J0 + J1s2
1 m1l0r1c1

m1l0r1c1 J1

]
C(q, q̇) =

[
c11 c12
c21 c22

]
, G(q) =

[
0

−m1r1c1

]
c11 =

1
2

m1l2
1 θ̇1 sin (2θ1) ,

c12 = −m1r1l0θ̇1 sin (θ1)+
1
2

m1l2
1 θ̇0 sin (2θ1) ,

c21 = −
1
2

m1l2
1 θ̇0 sin (2θ1) , c22 = 0

(4)

where s1 = sin (θ1) and c1 = sin (θ1); J0 = J0 + m0r2
0 + m1l2

0 ,
J1 = J1 +m1l2

1 , where J0 and J1 are the arm and pendulum bar
moment of inertia; m0 and m1 are masses of the rotatory base and
pendulum bar, respectively; l0, l1, r0, r1 are geometrical parame-
ters of the inverted pendulum, and d0 and d1 are the friction coeffi-
cient of the arm and pendulum joint, respectively. Then, obtaining
q̈ from (3) and replacing the system matrices from (4), the motion
model is given by:

q̈ = M−1
(
−C(q, q̇)−G(q)+

[
τ0
0

])
(5)

where the nonlinear system in (5), composed by the rotatory base
arm and pendulum bar, is written with respect to the system states
z(t) = q̇(t) in the following form:

ż0
ż1
ż2
ż3

=

 O2x2 I2x2

M−1
(
−C(q, q̇)−G(q)+

[
τ0
0

])


z0
z1
z2
z3

 . (6)

The previous dynamic model in (6) for the feedforward dynamics
of the RIP system describes the open-loop trajectories as shown
in Fig. 2. Parameters of the RIP system under study are descrbied
in Table 1, whereas the RIP model can be written in the nonlinear
state space representation as follows:

ż(t) = f (z(t),u(t))+ δ (t) (7)

where t represents continuous time; z(t) = [θ0 θ1 θ̇0 θ̇1]T ∈Rnz ,
and u(t) = [τ0 0]T ∈ Rnu represents the vector of system states

Tabla 1. MODEL PARAMETERS IN SI UNITS FOR THE FURUTA
PENDULUM UNDER STUDY.

Symbol Description Values Unit

Parameters of the base arm
τ0(t) Torque of base arm [-10, 10] Nm
θ0(t) Angular position [-π , π] rads
m0 Mass of base arm 0.08 Kg
J0 Arm moment of inertia 3.127·10−2 Kgm2

l0 Length of the base arm 0.15 m

r0

Length from the base
rotational center to the
arm CoM

0.1 m

d0
Friction coefficient of
the arm joint 0.475·10−1 Kgm2/s

g Gravity acceleration 9.8 m/s2

Parameters of the pendulum bar
θ1(t) Angular position [−π , π] rads
m1 Mass of the bar 0.098 Kg
J1 ‘ Bar moment of inertia 2.619·10−3 Kgm2

l1 Length of the bar 0.215 m

r1

Length from the bar
rotational center to the
bar CoM

0.148 m

d1
Friction coefficient of
the bar joint 0.128·10−2 Kgm2/s

and control input for the rotational inverted pendulum, respecti-
vely; δ (t) denotes modelling uncertainty. Here, the RIP system is
required to satisfy system state and control input constraints des-
cribed in polytopic form:

z(t) ∈Z(t), u(t) ∈U(t) (8)

where Z(t) ⊆ Rnz is closed, U(t) ⊆ Rnu is compact, and both
are bounded convex sets that will be used for designing the robust
control strategy, as will be discussed later. The modelling uncer-
tainty of the robot dynamics is unknown, but holds that:

δ (t) ∈D, D⊆Rnδ (9)

where D is a bounded convex and compact set containing the
origin in its interior. This set accounts for any uncertain reali-
zation including disturbances, subsystem interactions, and mode-
lling errors.

2.2 Control Objectives

The major control objectives of this work are:

• Rapidness: The pendulum bar is lifted as fast as it approaches
the stabilization region in the upward angular position of the
inverted pendulum.

• Transitivity: The Fuzzy logic-based swing-up motion control
of the pendulum bar is smoothly bypassed to a second phase
of NMPC control devoted to the stabilization. It is assured
evaluating angular position and speeds.
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Figura 2. Open-loop trajectories of the rotational inverted-pendulum. Sequential angular positions of the pendulum bar and rotational arm are depicted to the left and
right of each pair of position plots. Six pendulum bar positions are shown to describe the loss of energy for each oscillation of the RIP. The rotatory pendulum begins at
the initial angular position θ0(0) = π/2.

• Robustness: According to the proposed NMPC policy, origi-
nal constraints (8) are tightened with more restricted ones,
which consider additive model uncertainties (9) and time-
varying dynamics (7).

• Performance: An optimization problem based on the Real-
Time Iteration (RTI) Scheme is solved at each sampling ti-
me obtaining proper control inputs as a compromise between
deviations of the system trajectory from that of the reference
one.

• Control input and state constraint achievement: This require-
ment is guaranteed by assuring robust constraints satisfaction
in the optimization problem involved in the nominal predic-
tive law.

• Local asymptotic stability is assured through a candidate
Lyapunov function obtained for all uncertainty realization of
the mismatch system.

• Efficient on-line runtime is guaranteed for the optimization
problem raised in the nominal NMPC due to the effect of mo-
del uncertainties are already included within tightened cons-
traints.

3. SWING-UP MOTION CONTROL STRATEGY

Swing-up motion control is aimed at lifting the pendulum bar
from its stable resting position θ0 = π[rads] to its upright unstable
angular position θ0 = 0[rads], where the stabilization controller
is activated. As the pendulum bar can reach the upright position
with a certain speed and acceleration due to the rotational base
arm force and pendulum bar inertia, the swing-up motion control
requires to anticipate such effect in order not to overpass the
stabilization region. In this scenario, the goal of the swing-up
controller is to take the pendulum close to an stabilization zone
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Figura 3. Stabilization zone and swing-up motion control stages to lift the RIP
using the proposed Fuzzy set of rules. The left side of the figure shows the pendu-
lum motion in counter-clockwise, whereas the right side for clockwise.

including the equilibrium position, instead of a single angular
position. As the applied torque relies on the angular accelera-
tions θ̈0 and θ̈1 through the nonlinear terms J1 sin2 (θ1) and
m1l0r1 cos (θ1) as in the proposed model (6), respectively, these
terms influence the torque effect over the angular accelerations of
the pendulum bar at any angular position θ1. Then, for sake of
analysis, it is assumed that only θ̈1 has a potential contribution on
the applied torque input to the rotatory base due to the fact that the
effects of θ̈0 over the pendulum can be accounted as disturbances.

The swing-up control strategy is based on the energy-balance
methodology, which is adapted for RIP systems fromMuskinja
and Tovornik (2006); Kizir et al. (2008). Fuzzy logic based on
Takagi-Sugeno (T-S) model is employed to design the swing-up
controller, which is defined by the pendulum bar angle error eθ1
(i., difference between the reference and current pendulum arm
angle position), angular speed error e

θ̇1
(i., difference between the
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Tabla 2. Base of Fuzzy rules to represent the Takagi-Sugeno model used in the
design of the swing-up controller.

eθ1

e
θ̇1

NA ND NS Z PS PD PA
P NS Z NB – – – –
Z – – – N – – –
N – – – – PB Z PS

reference angular speed and current pendulum angular speed), and
torque τ0 as inputs and output of the swing-up controller. About
fifty input-output pairs

[
eθ1 ,e

θ̇1

]
and τ0 are obtained according

to the way the pendulum arm behaves as the control problem is
solved with different initial conditions. Figure 3 shows a safety
zone for the stabilization of the swing-up motion controller, and
acceleration-deceleration regions in which an RIP system can
approach a suitable swing-up control performance.

In order to balance and lift the inverted pendulum up to a sta-
bilization zone comprised by the angular position range θ1 ∈[
−π

6 , π

6

]
rads, the swing-up controller is designed according to the

following considerations:

• It is selected a Fuzzy set with seven rules of the angular po-
sition error eθ1 , evenly distributed within the operating range[

π

6 , 11π

6

]
rads. Each element of this Fuzzy set denotes the Ne-

gative Acceleration (NA), Negative Deceleration (ND), Ne-
gative Start swing-up (NS), Zero (Z), Positive Start swing-up
(PS), Positive Deceleration (PD), and Positive Acceleration
(PA).

• It is chosen a set with three Fuzzy rules for the error of the an-
gular speed e

θ̇1
, evenly distributed within the operating ran-

ge [−15,15]rad/s. Each element of this Fuzzy set denotes the
rotation direction of the pendulum, which corresponds to Ne-
gative (N) for clockwise, Zero (Z) for static angular position,
and Positive (P) for counter-clockwise.

• For the full actuation range of the rotatory base arm, the con-
trol output τ0 was divided into seven Fuzzy logic sets within
the operating range comprised by [−3,3]Nm. The three sets
of membership functions used to develop the swing-up mo-
tion controller are shown in Table 2, whereas Fig. 4 shows
the fuzzy regions for acceleration and deceleration in which
the controller is able to reach the stabilization zone.

Remark 1. It is worth of mentioning that previous experimenta-
tions disclose that increasing the torque actuation reduces the pen-
dulum swings and minimizes the actuation time of the fuzzy con-
troller to reach the stabilization zone, as shown in Fig. 5. Although
the actuation time is reduced as fast as the torque actuation is in-
creased, large torques on the rotatory base arm do not meaning-
fully impact over the reachability of the stabilization zone, thus
finding that the minimum lifting time can be achieved through a
maximal range of the torque actuation. For the case under study,
it was found that the optimal torque value can operate within a
threshold of ±3N for minimum lifting time.

NA PD ND PA
NS PS

Z
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1
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Z

Figura 4. Membership functions for the Fuzzy model. Input partitions regarding
the angular position of the pendulum bar θ1 are shown in (a). Input partitions with
respect to the angular speed θ̇1 are shown in (b), whereas output partitions for the
torque τ0 are shown in (c).
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Figura 5. Effect of torque variation on fuzzy swing-up controller response time.

4. STABILIZING CONTROL OF THE ANGULAR POSITION

Once the rotational pendulum is able to reach the stabilization re-
gion, the control strategy used in the swing-up phase is switched
to a stabilization approach using the NMPC framework to control
the RIP system. This Section presents the proposed tube-based
NMPC scheme as shown in Fig 6, detailing each one of its th-
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Error Mapping
Nominal

NMPC

Nominal
Model

Robust
Controller

Feedforward
Control Action

+

++

+

-

Rotational
Inverted Pendulum

Ref.

Figura 6. Graphical representation of the control scheme in block diagram for the
T-NMPC. The control architecture combines feedforward, corrective and robust
control actions to account for disturbances on the RIP system.

ree components, i.e., feedforward control u f f , corrective control
uco, and nominal control action unm. In addition, an LMPC con-
trol structure is also described with the aim of comparing to that
of the proposed control approach. The actual control input u is
obtained by the summation of the feedforward control input u f f ,
corrective control input uco, and nominal control input unm, i.e.,
u = u f f +uco +unm. The following sub-sections detail the design
for each control action mentioned.

4.1 Feedforward Control

As the feedback control input for the system dynamics only regu-
lates the trajectory generated between the reference and actual sys-
tem states, the control input must be combined with a feedforward
action to counteract the effects of disturbances. The feedforward
control input is derived from a pre-planned reference trajectory in
which the RIP exactly describes its motion without acting distur-
bances, i.e., the system trajectory is evaluated with zero dynamics
and disturbance-free reference trajectory. To determine the feed-
forward control action, the torque input τ0 is evaluated within the
pendulum model dynamics in (6). Accordingly, the reference tor-
que, that comprises the feedforward control input u f f = τ ref

0 , is
given by:

τ
ref
0 = −1

2
m1l2

1 θ̇
ref
0 sin (2θ1)+m1r1l0θ̇

ref
1 sin (θ1)

− 1
2

m1l2
1 θ̇

ref
0 sin (2θ1).

(10)

The reference trajectory described by the system states zref =
[θ ref

0 θ ref
1 θ̇ ref

0 θ̇ ref
1 ]T is formulated using the system model (6)

in terms of the reference angular position and speeds as follows:
θ ref

0 = α , θ ref
1 = 0, θ̇ ref

0 = ω , and θ̇ ref
1 = 0, where α and ω are give

angular position and speed of the rotatory base, respectively. The
defined feedforward control action ensures that the RIP is able to
track and anticipate the reference trajectory only if there are no
initial state errors, measurement errors, or uncertainties, thus a ro-
bust feedback control action is required.

4.2 Corrective Control

Some previous notation to describe operations in polytopic set-
theory required here for the robust tube-based control strategy can
be found in Blanchini (1999).

The nominal model associated with the nonlinear dynamics of the
pendulum model in (7) can be written as:

˙̄z(t) = f (z̄(t), ū(t)) (11)

where z̄(t) and ū(t) denote the state and control input of the
uncertainty-free model, respectively. Since the difference between
the actual and nominal system is required to correct the model
mismatch, the deviation of the system error trajectory has been
modelled as the difference between the tracking error dynamics
and modelling error dynamics with respect to the nominal system.
The previous procedure has led to a parameter-varying, discrete-
time model in the form:

∆ze(tk+1) = Ad
e(p(tk))∆ze(tk)+Bd

e(p(tk))∆ue(tk)+we(tk) (12)

where tk represents the current time; p(tk) ∈ Rnp stands for the
parameter vector of the mismatch model; ∆ze(tk) = ze(tk)− z̄e(tk)
is the error vector associated to the tracking errors ze(tk) and
modelling errors z̄e(tk); ∆ue(tk) is the control input of the
mismatch model, and we(tk) denotes unknown uncertainties of
the modelling errors bounded in a compact set We ⊆ Rnw . The
discrete-time model is obtained with the integral approximation
method Sakhdari and Azad (2018), whose system matrices Ad

e
and Bd

e are are calculated with sampling time Ts.

For any permissible realization of the vector p(tk) enclosed within
a polyhedra P⊆Rnp , the system matrices: Ad

e ∈Ae and Bd
e ∈Be,

also remain bounded and determined within the polytopes Ae and
Be. Note that the parametric model is characterized by a set of
linear systems rather than only one, where each element of the
set corresponds to a vertex system. Each vertex is characterized
by the lth-set of matrices

{
Al

e,Bl
e
}

, which are generated by the
extreme values of the parameter range. Thus, the polytopic
sets of the system error satisfy Ae = co

{
A1

e ,A2
e , ...,AL

e
}

and
Be = co

{
B1

e ,B2
e , ...,BL

e
}

, being L = 2np the total number of
system vertices.

As preliminary objective, the control actions are required to com-
pensate for tracking errors generated by disturbances while the
control performance is reached. Hence, the control input ∆ue(tk),
for the system error in (12) without considering uncertainties, is
calculated as follows:

∆ue(tk) = K(tk)(ze(tk)− z̄e(tk)) (13)

where K(tk) is a disturbance rejection controller gain that co-
rrects the error trajectory as close as possible to the disturbance-
free trajectory. As the dynamics of the error-based trajectory
are required to be invariant to uncertainties, the nominal error-
based control input ūe(tk) = K(tk)z̄e(tk) is conditioned to trac-
king the reference trajectory. The design of the control gain K(tk)
is required to regulate and stabilize the dynamics of the mis-
match system, then assuming a candidate Lyapunov function de-
fined by Γ(∆ze) = (∆ze)

T P∆ze, the mismatch system is locally
asymptotic stabilizing if there is a matrix P = PT > 0 such that
Γ(∆ze(tk+1))−Γ(∆ze(tk))< 0 for all ∆ze 6= 0. In addition, in or-
der to obtain the matrix P while reaching the upper bound of the
LQR performance, it is considered that:

Γ (∆ze(t0)) ≥mı́n
∆ue

∞

∑
tk=0
‖∆ze (tk)‖2

QLQR
+ ‖∆ue (tk)‖2

RLQR
,
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where ‖ · ‖ denotes the Euclidean norm, and QLQR and RLQR are
LQR weight matrices. Hence, the stabilizing condition, taking in-
to account the candidate function Γ(∆ze(tk)) and the previous per-
formance specification, is:

Γ(∆ze(tk+1))−Γ(∆ze(tk)) ≤ ΓLQR (∆ze(tk)) . (14)

As in Gonzalez et al. (2009), after replacing Γ and ΓLQR by
their corresponding functions in (14), the new requirement can be
arranged according to the following condition:

P−
(

Al
e +Bl

eκ
l
)T

P
(

Al
e +Bl

eκ
l
)
≥ QLQR +κ

lT
RLQRκ

l , (15)

where κ l is the local control gain that corrects the mismatch on
the trajectory of the lth-vertex system on the extreme realization
of the polytope P. Taking the Schur complement to transform the
nonlinear condition (15) into convex inequalities, it holds that:

P
(
Al

e +Bl
eκ l
)T QT /2

LQR

(
R1/2

LQRκ l
)T

Al
e +Bl

eκ l P−1 0 0
Q1/2

LQR 0 I 0
R1/2

LQRκ l 0 0 I

≥ 0. (16)

Operating the previous Linear Matrix Inequalities (LMIs) with ho-
mogeneous transformations P = W−1 with W > 0, setting Y l =
κ lW , and pre- and post-multiplying by a matrix diag(W , I, I, I) of
appropriate dimensions, it follows that:

W ∗ ∗ ∗
Al

eW +Bl
eY

l W ∗ ∗
Q1/2

LQRW 0 I ∗
R1/2

LQRY l 0 0 I

≥ 0 (17)

where ∗ denotes symmetry, and matrices W , Y l are decision varia-
bles obtained from the solution of the following linear maximiza-
tion problem:

max
W ,Y l

Trace(W )

s.t. (17), ∀l ∈ [1, ..,L].
(18)

As a result of the previous optimization problem, the matrix
P = W−1, and an l-number of control gains κ l = Y lW−1 are de-
termined. The feedback control gain K(tk) can be obtained by the
convex combination of the gains κ l through an affine interpolation
function. Finally, the control input calculated by the local correc-
tive control gain K(tk) contributes with the applied control input u
as a feedback control action such that uco = K(tk)(ze(tk)− z̄e(tk)).

4.3 Nominal NMPC

As the RIP model entails uncertainties due to unknown modelling
dynamics, predictions can generate relevant losses in the tracking
control performance if large model mismatch occurs. Thus, to
strength robust control actions on the pendulum dynamics, the de-
sign of a tube-based control strategy is taken into account. The
methodology is based on prediction trajectories centred around
the uncertainty-free ones subject to tight constraints. As in Kou-
varitakis and Cannon (2015), the robust feedback control action
for nonlinear systems can be written according to the control law

u(tk) = ū(tk) + ue(tk), where ue(tk) is the tracking error-based
input previously calculated in (13) and unm = ū(tk) is the input
generated by a nominal NMPC. Then, the optimization problem
associated to the nominal control system is:

min
z̄(·),ū(·)

∫ tk+tN

tk
[J (tk, z̄, ū)]dt + JN (tk + tN , z̄, ū)

s.t. z̄(tk) = ˆ̄z(tk)
˙̄z(t) = f (z̄(t), ū(t))
z̄N(t + tN) ∈ Z̄N

z̄(t) ∈ Z̄(t), ∀t ∈ [tk, tk + tN ]

ū(t) ∈ Ū(t), ∀t ∈ [tk, tk + tN ]

(19)

with:

J (t, z̄, ū) = ‖ zref (t)− z̄ (t) ‖2
Q̄ + ‖ uref (t)− ū (t) ‖2

R̄

JN (t + tN , z̄, ū) = ‖ z̄ref (t + tN)− z̄ (t + tN) ‖
2
P̄N

(20)

where tN denotes the prediction horizon; Q̄ and R̄ are symmetric
positive definite matrices, which provide the capability of tuning
performance; J is the stage cost function that describes the control
objectives; JN is the terminal cost function with stabilizing matrix
P̄N . As the matrix P̄N is usually hard to calculate for nonlinear
systems without increasing conservativeness, it was assumed as a
designing parameter. The term Z̄N denotes the nominal constraint
set of the prediction terminal region to ensure robust constraint
satisfaction, which is calculated adopting the one-step predictor
Gonzalez et al. (2009). The optimizaton problem is solved using
the Real-Time Iteration scheme as that available in the ACADO
Toolkit Houska et al. (2011). The Global optimality cannot be
guaranteed because the optimization problem (19) is non-convex.
The overall closed-loop stability is not performed here due to the
scope of this work.

Constraints on the nominal system are defined in the following.
As system state trajectories are required not to exceed specified
state and control input constraints (8) and uncertainty sets (9), the
underlying insights from tube-based control are proposed as an
alternative to impose a set of more tightened constraints; Z̄(tk)
and Ū(tk), under which the error evolves in such restricted sets.
Thus, new constraints can be proposed:

Z̄(tk) = Z	Ze(tk), Ū(tk) = U	Ue(tk) (21)

where the sets Ze(tk) and Ue(tk) stand for constraints on pre-
dictions of the error states and control input, respectively. Follo-
wing, as the mismatch model states and control input hold that
∆ze(tk) = ze(tk)− z̄e(tk) and ue(tk) = ūe(tk)+K(tk)∆ze(tk), cons-
traints on the error system in polytopic form must also satisfy that:

Ze(tk) = Z̄e(tk)⊕∆Ze(tk), Ue(tk) = Ūe⊕K(tk)∆Ze(tk)
(22)

The difference between the actual z(t) and nominal states z̄(t) ac-
counts for additive model uncertainties δ (t) ∈D. Thus, replacing
the error constraints (22) in (21) along with uncertainty polytopic
set D, the set of nominal constraints can be rewritten as follows:

Z̄(tk) = Z	D	T(tk), Ū(tk) = U	V	K(tk)T(tk) (23)
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where the polytope V = Ūe represents a set of prescribed cons-
traints on the control input of the nominal mismatch system;
T(tk) = ∆Ze(tk) is the polytope referred as the tube, which stands
for all possible deviations on the mismatch system states. Since
constraints must be tightened as system states deviate from the
disturbance-free trajectory, these constraints will change on-line
according to the error dynamics (12). Then, the sequence of poly-
topes, capable of reaching any realization of the closed-loop mis-
match system with initial polytope T(t0|tk) = {0}, is given by:

T (tk+1|tk) , ∪
Al

e ∈Ae,
Bl

e ∈Be

(
Al

e +Bl
eK(tk)

)
T (tk|tk)⊕We

∀l ∈ [1, ...,L] , ∀tk ∈ [0, ..., tN−1]

where T (tk+1|tk) represents the one-step prediction set of all
reachable deviations of the error states at current time tk. Finally,
the compact representation of the reachable set for all system rea-
lization with closed-loop dynamics Al

cl = Al
e +Bl

eK(tk) is as fo-
llows:

T (tk+1|tk) =

∪
Al

cl ∈Acl


k
∏

i=0
Al

cl (ti|tk)T(tk|tk)⊕
k−1⊕
i=0

i
∏
j=0

Al
cl

(
t j|tk

)
We, k > 0

T (tk|tk) , k = 0
∀l ∈ [1, ...,L] ,∀k ∈ [0, ...,N−1].

Remark 2. It is worth of mentioning that the online calculation of
the tightened system constraints involves additional computational
cost, but reduced for a conservative number of constrained system
states. In addition, the computational performance depends on the
appropriate selection of N.

4.4 Linear MPC

The linear MPC controller is designed using the model linearisa-
tion with first-order Tylor approximations, which formulation can
be described by:

żδ (t) = A(t)zδ (t)+B(t)uδ (t) (24)

where the matrices A(t) = ∂ f
∂ z (z(t),u(t)) and B(t) =

∂ f
∂u (z(t),u(t)), in the operating point z(t0) = zδ0, are:

A(t) =


0 0 1 0
0 0 0 1

0 gm2
1l0r2

1
det(M)

J1d0
det(M)

m1l0r1d1
det(M)

0 − J0m1r1g
det(M)

−m1l0r1d1
det(M)

− d1J0
det(M)



B(t) =
1

det(M)


0
0
−J1

m1l0r1



Figura 7. Graphical representation of the RIP system and its separated subsystems.

The RIP system in state space for the linearised model under study
(with parameters in Table 1) becomes:

żδ ,0
żδ ,1
żδ ,2
żδ ,3

=


0 0 1 0
0 0 0 1
0 0.52 0.38 0
0 30.1 0.048 −0.27




zδ ,0
zδ ,1
zδ ,2
zδ ,3

+


0
0

−8.16
3.72

uδ (t)

y =
[

1 0 0 0
0 1 0 0

]
zδ ,0
zδ ,1
zδ ,2
zδ ,3

+[0 0
0 0

]
uδ (t).

(25)
Taking into account the linear state space representation of the
model (25), the transfer functions associated to the variables of
interest; Θ0 for the rotatory base angular position and Θ1 for the
pendulum bar angular position, the transfer function of the overall
system can be obtained with G(s) =C(sI−A)−1B+D. Then, the
resulting subsystems are given by:

Θ0(s) =
9.8

s(s+ 11.8)
U(s)

Θ1(s) =
−8.82s

(s+ 11.8)(s2−32.66)
U(s)

(26)

Under the analysis of the previous transfer functions, the
subsystem dynamics related to the pendulum arm are stable and
comprise an integrator, where the solution for this part includes
only a proportional controller (P). On the other hand, for the
pendulum bar, it is observed that this subsystem corresponds
to dynamics of non-minimum phase with an unstable pole in
s1,2 = −±

√
32.66. Furthermore, both subsystems are relatively

fast due to the pole location in s = −11.8. Then, to simplify the
design of the controller, the overall RIP system is separated into
two independent transfer functions working in cascade mode
due to the separability analysis performed in Section 2. Figure 7
shows the overall system separated into the two subsystems
within a single system representation.

Note that the idea of separating the overall system into two
subsystems as if they were independent simple input-simple
output subsystems, leads the design to reduce considerably the
system architecture and allows to apply LMPC to the subsystem
represented by the transfer function of Θ1(s). Figure 8 shows the
overall control system architecture, where the controller K1(s)
represents the proportional control gain for the stable output
Θ0(s) and K2(s) denotes the internal gains obtained from the
LMPC controller for the unstable output Θ1(s).

The cost function associated to the optimization problem for the
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Figura 8. Representation of the linearised system in a cascade control system ar-
chitecture. The green solid square represents the internal loop T1(s) devoted to
control the transfer function G2(s) with the MPC control gain K2, whereas the red
dotted square for the open loop transfer function T2(s).

LMPC controller is :

J = (Rs−Y )T (Rs−Y )+∆uT
+Γ∆u+ (27)

where Rs represent the vector of the augmented reference for
the prediction horizon N; ∆u+ denotes the incremental con-
trol input; Γ denotes a positive-definite matrix weighting the
incremental control input, and Y is the predicted system out-
puts. Such outputs can be represented within the horizon pre-
diction according to the predictions Y = H∆u+ + Fvδ (k),
where the incremental control input is described by ∆u+ =
[∆u(k) ∆u(k+ 1) ... ∆u(k+M−1)]T . The matrices H and
F of the output prediction model are:

H =


CeBe 0 ... 0

CeAeBe CeBe ... 0
...

...
...

...
CeAN−1

e Be CeAN−2
e Be ... CeBe

 , F =


CeAe
CeA2

e
...

CeAN
e ,


with augmented model vδ (k + 1) = Aevδ (k) + Be∆u(k), and li-
nearised system matrices Ae and Be of the augmented discrete mo-
del: [

vδ (k+ 1)
uδ (k)

]
=

[
A B
0 1

][
vδ (k)

uδ (k−1)

]
+

[
B
1

]
∆u(k)

y(k) =
[
C 0

][ vδ (k)
uδ (k−1)

]
vδ (k) =

[
zδ (k)

u(k−1)

] (28)

Then, the solution ∆u(k)o for the optimization control problem in
(27) can be explicitly obtained by:

∆uo
+ =

(
HT H +Γ

)−1
HT (Rs−Fv(k)) (29)

according to the control policy of receding horizon, the control
input ∆u(k)o to be applied to the RIP system with time-varying
reference trajectory r(k) is :

∆u(k)o = N
(
HT H +Γ

)−1
HT (Nr(k)−Fv(k)) (30)

or,
∆u(k)o = K1r(k)−K2v(k) (31)

where the proportional gain K1 and the predictive control gain K2
for the controller MPC can be identified from (31) as:

K1 = N
(
HT H +Γ

)−1
HT N (32)

and,
K2 = N

(
HT H +Γ

)−1
HT F (33)

The MPC gains found for a prediction horizon N = 10 and Γ =
0.8I2 are:

K1 = 0.02, K2 = [−27 −1.06 −4.29 −2.85]T (34)

The stability of the closed-loop control system is analysed using
control gains K1 and K2, under which the transfer functions T1 and
T2 for each subsystems are given by:

T1(s) =
−25.416(s2−32.66)

(s+ 20.94)(s+ 0.4168)(s2 + 17.65s+ 95.1)

T2(s) =
−1270.81(s2−32.66)

s(s+ 14.09)(s+ 12.98)(s+ 12.21)

(35)

It is worth of mentioning that under the analysis of both closed-
loop transfer functions T1(s) and T2(s) for the subsystems, the
overall system is stable with control gains K1 and K2 due to all
poles are located at the left-half plane of the root site.

5. FUZZY-MPC FRAMEWORK: INTELLIGENT BYPASS

This Section describes the intelligent bypass and their conditions
to switch the swing-up motion controller towards the stabilization
of the pendulum bar carried out with the predictive controller. To
do so, a hysteresis algorithm allows a secure and fast switching
mode between both proposed motion control strategies. Also, it
is guaranteed a smooth control switching in such a way that the
pendulum motion does not loose stability.

Previous experimentations disclose that the stabilization zone de-
fined by the angular position of the pendulum bar lies within a
range given by θ1 ∈

[
−π

6 , π

6

]
, thus guaranteeing the suitable com-

mutation of the Fuzzy logic-based controller and the predictive
controller. The maximum torque must be within the range of 0.4N
up to 3.9N according to the pendulum structure under study to
assure the pendulum lifting and to avoid destabilization when the
systems commutes between control techniques, as shown in Fig. 9.
Likewise, the switching system is capable of bypassing between
control techniques when the pendulum angular velocity is reduced
as the angular position of the pendulum bar reaches the stabiliza-
tion zone (i.e., close to 0[rads]). The intelligent bypass is capable
of measuring torque actuation, speed and acceleration of the pen-
dulum bar to decide if the pendulum is in conditions of stabiliza-
tion. Furthermore, if the predictive control algorithm is unable to
control due to high perturbations or if the angular position does
not reach the stabilization zone, the fuzzy swing-up algorithm is
activated to begin a new control cycle.

6. EXPERIMENTAL RESULTS

Before carrying out robustness tests, two trial cases are reported
to quantitatively assess and compare the performance of the
proposed controllers. For the first and second case, the proposed
controllers were implemented in a simulated RIP system using
Simulink in the Matlab 2018a development platform from
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Figura 9. Several trials to determine the maximal torque actuation at minimum
swing-up time. The angular position of the rotatory arm and pendulum bar ar
shown in (a)-(b), whereas their speeds in (c)-(d), respectively.

MathWorks®, Natick, MA, USA, whose technical parameters can
be shown in Table 1 and the simulation scheme can be shown in
Fig. 10. For the third case, the controllers were tested using a RIP
model built in the simulation environment VRep under the Robo-
tic Operative System (ROS) middleware on Windows, as shown
in Fig. 11. The simulation platform was used to synchronize
feedback information and distribute the control tasks in parallel
nodes. The pendulum model was provided of and IMU/INS with

GPS-aided sensors to obtain orientation and rotational speeds, and
an RTK-GPS to achieve high-accuracy positioning. Sensors and
other components were integrated in a centralized architecture to
allocate the torque command on the pendulum base actuator.

For the first case, the proposed controller was tested swinging-up
the rotational pendulum, and thus it was evaluated under external
disturbances acting on the system. The second test consisted on
assessing the stability of the pendulum system for two scenarios,
i.e., with and without considering disturbances. The third trial
consisted on evaluating robust control performance of the propose
controllers by tracking a reference trajectory. The three tests are
detailed in the following.

6.1 Swing-up Test

This test is performed through three simulation cases. The lifting
of the pendulum starting from a resting position is tested in the
first case. The second case is devoted to test if the swing-up
motion control is capable of recovering the pendulum from
external disturbances without exceeding the stabilization region,
whereas the third case verifies if the pendulum is able to recover
when overpasses the stable zone. The simulation results for the
three cases can be seen in Fig. 12. The results for the first case
shows that the Fuzzy logic-based controller starts swinging the
pendulum arm by applying an initial torque input to the rotatory
base, increasing the angular position of the pendulum bar until
reaching the stabilization from an initial angular position at the
downward equilibrium point θ1 = −180◦. The pendulum bar
performs around four oscillations within a swinging time of 7.5s
before achieving the upward pendulum position. The results for
the second case shows that even an external disturbance affect
the pendulum bar stabilization, the swing-up motion control is
not activated due to the pendulum has not leave the stabilization
region. As the external disturbance leads the pendulum out of the
stabilization region, the swing-up motion controller is activated
and the pendulum over the loss of stability, as shown in the third
test case of Fig. 12.

6.2 Robustness and Stabilization Test

This test is carried out with the proposed tube-based NMPC
controller in order to stabilize the pendulum arm in the upward
position. In addition, for compassion purposes, the linear MPC
(LMPC) approach is implemented with the aim of stabilize the
RIP system. Figure. 13 shows the simulation results performed
in a trial time set to 10s. By inspection, the control performance
of the tube-based NMPC control approach enhances with respect
to that of the LMPC. The overshoot of the angular position of
the pendulum bar is decreased with the proposed controller due
to the effect of the robust constraints on the angular speed of the
rotatory arm. Although the angular position of the pendulum bar
obtained with the LMPC is faster than the one of the T-NMPC,
this variable does not show relevant overshoot for the proposed
controller. In addition, the angular speed of the rotatory base is
faster using the T-NMPC than that of the LMPC because correc-
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Figura 10. Simulation scheme for the first and second trials. The first trial consisted on assessing the control performance of the swing-up scheme, whereas the second
test is devoted to evaluate performance of the NMPC within the stabilization region.

Figura 11. Simulation model of the Furuta pendulum under study, which was used
for the third test. The third test is devoted to assess robust performance of the
proposed controllers.

tive and feedforward control actions are included in the propo-
sed robust controller. In order to obtain a quantitative of the con-
trol performance of the motion controllers, it was used the ma-
ximum absolute value of the errors eθ ,1 and e

θ̇ ,1 Delibasi et al.
(2007) for each algorithm. In this scenario, while the pendulum
bar is stable around the equilibrium point, the maximum absolute
angular position error for the pendulum bar using the T-NMPC
is emax

θ ,1 = 1.1[rads], whereas emax
θ ,1 = 1.55[rads] for the LMPC

controller. The angular speed of the pendulum bar using the T-
NMPC becomes emax

θ̇ ,1 = 1.26[rads/s], whereas for the LMPC is
emax

θ̇ ,1 = 1.56[rads/s]. In this scenario, the control performance of
the tube-based NMPC improves that of the LMPC.

6.3 Trajectory Tracking Test

In this experiment, the pendulum was devoted to tracked an
oscillatory-typed reference trajectory to evaluate robustness of the
proposed controller under the proposed T-NMPC controller. Such
trajectories allowed to investigate control performance for the full
operating range of the stabilization zone. The reference trajectory

was designed in such a way that only the angular position of the
rotatory bar was devoted to track the oscillations while the pendu-
lum bar kept within the stabilization zone. Then, the pre-planned
reference trajectory was zref(t) = [−30cos(2π×60t) 0 0 0]T with
initial angular position of the rotatory base set to −30[degrees].
The resulting four system states and control input of the RIP for
the trajectory tracking test can be shown in Fig. 14. By inspec-
tion, the proposed T-NMPC and LMPC are capable of maintaining
the pendulum bar within the stabilization zone while the rotatory
base tracks the oscillatory reference trajectory; however, the po-
sitioning errors are reduced with the T-NMPC control approach
compared to that of the LMPC. Similarly, it is remarkable that
the oscillations of the pendulum bar has lower amplitude with T-
NMPC than the one of LMPC while tracking the reference tra-
jectory, mainly due to the inertias (i.e., internal disturbance) of
the pendulum bar by the rotatory base motion. With respect to
the maximum absolute value of the errors eθ ,1 and e

θ̇ ,1, the maxi-
mum tracking error eθ ,1 does not overpass±2.5[degrees] from the
upright equilibrium point at reduced angular speed of the pendu-
lum bar about ±5[degrees/s] using the T-NMPC control strategy.
Then, it is worth of mentioning that the T-NMPC control approach
is capable of taking advantage of non-linearities of the system mo-
del and meeting constraint unlike its linear counterpart.

7. CONCLUSIONS

In this work, a robust tube-based NMPC (T-NMPC) frame-
work has been developed and validated on Rotational Inverted-
Pendulum (RIP) systems by swinging-up, stabilizing and tracking
pre-planned time-based trajectories subject to disturbances. Based
on a prediction dynamical model that stands for the RIP motion
dynamics, the control strategy has been raised within a centra-
lized control scheme to increase robust control performance of
the overall system. Specifically, the control approach was aimed
at reinforcing robustness in the trajectory tracking NMPC perfor-
mance while maintaining asymptotic stability and meeting robust
constraints against external disturbances, which was the main con-
tribution of the work. The proposed T-NMPC framework integra-
ted: a) a feedforward control action to anticipate disturbances, and
b) a corrective feedback control action to regulate tracking errors
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Figura 12. Results for the first simulation test. The first column represent to the results of the first trial in which the swing-up motion system is able to lift the pendulum
starting from the resting angular position. The second column shows the RIP response against external disturbances acting at t = 30[s]. The last column shows the third
trial in which the pendulum bar is capable of recovering from external disturbances as the pendulum bar leaves the stable region. From top to bottom rows, it is shown
the angular position and speeds of the rotatory arm and pendulum bar.

combined with that of a nominal NMPC to keep the system sta-
tes around disturbance-free trajectories within feasible tightening
constraints (i.e., tubes). Additionally, the RTI scheme was adop-
ted here to solve explicitly the optimization problem associated to
the T-NMPC framework. The outcome of the experimental trials

shows that robust performance of the T-NMPC controller can be
strengthen against disturbances acting on the closed-loop control
system when comparing to inherently-robust linear predictive con-
trollers.
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Figura 13. Results for the second simulation test. The outcome of the linear MPC to control the pendulum arm within the stabilization region are shown in (a), whereas
for the proposed robust T-NMPC in (b). An external disturbance is applied to the top of the pendulum bar in both case studies at t = 5s. It is shown that robust constraints
on the angular position and speeds are met despite disturbance acting on the RIP system. Note that the overshoot of system response regarding the angular position of
the pendulum bar is reduced with the robust T-NMPC with respect to that of the NMPC approach.

0 50 100 150 200
T[s]

-40

-20

0

20

40

60

80

100

0
 [

D
e

g
re

e
s]

Reference
LMPC
T-NMPC

(a)

0 50 100 150 200

t[s]

-10

-5

0

5

10

1
 [

D
e

g
re

e
s]

LMPC
T-NMPC

(b)

0 50 100 150 200

t[s]

-30

-20

-10

0

10

20

30

0
 [

D
e

g
re

e
s/

s]

LMPC
T-NMPC

(c)

0 50 100 150 200

t[s]

-30

-15

0

15

30

1
 [

D
e

g
re

e
s/

s]

LMPC
T-NMPC

(d)

0 50 100 150 200

t[s]

-10

-5

0

5

10

0
 [

N
m

]

LMPC
T-NMPC

(e)

Figura 14. Results for the third test using the proposed T-NMPC and LMPC controller while tracking an oscillatory reference angular position for the rotatory base. It
is shown that the proposed T-NMPC controller is capable of tracking the oscillatory trajectory, whereas the LMPC tracks the reference trajectory even positioning error
can be shown by inspection. The green dotted lines represent the state or control input constraints.
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