
Artificial Neural Network Model to Predict the Factor of Safety in Earth Dams Subjected to Rapid Drawdown                                 33 

 
Revista Politécnica, Agosto - Octubre 2024, Vol. 54, No. 1 

1. INTRODUCTION1 

 

Since ancient times, the availability of water has been a 

limiting factor for the development of society, which has 

forced man to build structures for the use and management of 
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water resources. The dams built around the world represent 

fundamental solutions to meet this objective (Toapaxi et al., 

2015). 
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Abstract: Rapid drawdown has been identified as one of the most frequent causes of slope failures due to the effects 

associated with drought and operational changes when incorporating hydroelectric plants, which influence the filling 

level of earth dams. The main goal of this research is to obtain predictive models based on Artificial Neural Networks 

that return the factor of safety of the upstream slope in homogeneous earth dams in the face of the effect of rapid 

drawdown. Three geometries and 40 soils were defined to form the embankment, from which hybrid numerical 

models of transient water flow with unsaturated soils were built, considering three discharge speeds. From these 

results, a database was built to develop the predictive models, by means of the KNIME program and an algorithm 

based on Artificial Neural Networks. The behavior of the factor of safety as a function of time is also analyzed to 

establish its recovery intervals. Main results show that the minimum factor of safety is obtained between 52 % and 

88 % of the total drawdown time. Regarding the predictive models, the adjusted R2 determination coefficients were 

greater than 95 % in all cases and the errors remained below 10 %. This demonstrates a high effectiveness of this 

algorithm and the validity of its application to geotechnical problems. 
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Modelo de Redes Neuronales Artificiales para Predecir el Factor de 

Seguridad en Presas de Tierra Sometidas a Desembalse Rápido 
 

Resumen: El desembalse rápido se ha identificado como una de las causas más frecuentes de las fallas en taludes 

debido a los efectos asociados a la sequía y a los cambios de operación al incorporar hidroeléctricas, los cuales 

influyen en el nivel de llenado de las presas de tierra. Esta investigación tiene como objetivo fundamental la obtención 

de modelos predictivos basados en Redes Neuronales Artificiales que devuelvan el factor de seguridad del talud aguas 

arriba en presas de tierra homogéneas ante el efecto del desembalse rápido. Se definieron tres geometrías y 40 suelos 

para conformar el terraplén, a partir de los cuales se construyeron modelos numéricos híbridos de flujo de agua 

transitorio con suelos no saturados, considerando tres velocidades de desembalse. A partir de estos resultados, se 

construyó una base de datos para desarrollar los modelos predictivos, a través del programa KNIME y un algoritmo 

basado en Redes Neuronales Artificiales. Se analiza, además, el comportamiento del factor de seguridad en función 

del tiempo para establecer sus intervalos de recuperación.  Los principales resultados muestran que el factor de 

seguridad mínimo se obtiene entre el 52 % y el 88 % del tiempo total de desembalse. En cuanto a los modelos 

predictivos, los coeficientes de determinación R2 ajustados fueron superiores al 95 % en todos los casos y los errores 

se mantuvieron por debajo de 10 %. Se demuestra una alta efectividad en este tipo de herramienta y la validez de su 

aplicación a problemas geotécnicos. 
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The complex behavior of soil and rock as construction 

materials limits the understanding of their applications in 

engineering projects. For this reason, engineering designs are 

based on fundamental principles of simplification, where part 

of their characteristics is assumed. Sometimes this means that 

the behavior of the soil is underestimated or overestimated in 

design work (Shahin, 2016).  

 

Recently, the construction industry has seen a rise in utilizing 

technological information for data collection and analysis 

(Shahin, 2016). These results have caused the growth of the 

use of Artificial Intelligence techniques to solve complex 

engineering problems (Jong et al., 2021). 

In analyzes related to slope stability, Factor of Safety (FS) is 

the index that allows establishing when a slope is stable or not 

for certain conditions. When obtaining the FS, only elements 

related to the properties of soils and geometry of the analyzed 

structure were originally included. However, in recent years, it 

has been necessary to add external load elements directly 

associated with loss of stability of these structures (Alfatlawi 

et al., 2020; Nanehkaran et al., 2023). 

 

During a period of prolonged drought, the water level of 

earthen dams is significantly reduced, which in turn causes a 

decrease in the FS on the upstream slope, if the rate of descent 

of the water level is large enough. This loss of stability may or 

may not be associated with collapse phenomena, which would 

cause other undesirable consequences that could lead to the 

loss of human lives and material resources (Bongiorno et al., 

2015; Flores et al., 2020). The phenomenon of drawdown in 

dams can also occur due to the careless operation of intake 

works after the placement of small hydroelectric plants, so that 

it is essential to review this behavior to prevent failures that 

could become disastrous (Haramboure et al., 2021). In the 

transient analysis, the variability of the flow load involved is 

considered, contrary to what was proposed for steady flow 

conditions. This variation in loads occurs due to changes in 

boundary conditions associated with the variation of water 

levels over time (Alonso & Pinyol, 2016; Boushehrian et al., 

2017; Flores et al., 2022).  

 

When considering the loading state caused by rapid drawdown 

inside the embankment of earthen dams, Boushehrian et al. 

(2017) study the parameters linked to the dissipation of pore 

pressures during them. Romer et al. (2019) establishes that the 

pore pressures within the dam embankment cannot be 

completely dissipated during the release, a criterion verified by 

Pinyol et al. (2013). Pinyol et al. (2008) studied the effect of 

drawdown considering its effect on the degree of saturation, 

showing a high similarity between the numerical models and 

the piezometric readings in the dams, in turn, they established 

a relationship between the water level inside the embankment 

and the duration of the event.  

 

It should be taken into account that the effect of the drawdown 

on the FS with respect to the time and duration of the 

phenomenon, causes a recovery of the FS value, linked to 

dissipation of pore pressures inside the embankment during 

drawdown event. To establish a definitive criterion for the 

cases analyzed all FS results were normalized as a function of 

time in an interval between 0 (initial moment) and 1 (final 

moment); as shown in Equation 1. Normalization has shown 

its usefulness in preprocessing to apply mining techniques, 

including clustering algorithms, artificial neural networks, and 

classification (Kim et al., 2014; Patra & Basudhar, 2003; Singh 

et al., 2023). 

 

𝑋𝑁 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                         (1) 

 

Where 𝑋𝑁 is the resulting normalized value; 𝑋 is the original 

value obtained; 𝑋𝑚𝑖𝑛 is the minimum value of the data set and 

𝑋𝑚𝑎𝑥 is the maximum value of the data set. 

 

Traditionally, in the design and construction of earth dams, the 

critical condition of total saturation is taken into account. 

However, throughout the useful life of these structures, events 

appear that put stability at risk and are related to states of 

partial saturation of soil in the embankment. Rapid drawdown 

classifies as one of these events. Once the drawdown 

phenomenon occurs, it is possible to apply the criteria of the 

unsaturated soil mechanic, describing in a more realistic way 

the behavior of part of the upstream slope. To model the effect 

of unsaturated soils on slope stability, it is necessary to include 

suction as a fundamental variable that describes this behavior, 

which is represented by the soil characteristic curve (Bhaskar 

et al., 2022).  

 

Soil characteristic curves are obtained using Aubertin et al. 

(2003), described in Equation 2. 

 

𝑆𝑟 = 𝑆𝑐 + 𝑆𝑎
∗ × (1 − 𝑆𝑐)                          (2) 

 

Where 𝑆𝑟 is the saturation degree; 𝑆𝑐 is the saturation degree 

due to capillary forces and 𝑆𝑎
∗ is the limited degree of 

saturation due to adhesion (𝑆𝑎) (Equation 3). 

 

𝑆𝑎
∗ = 〈1 − 𝑆𝑎〉 + 1                                  (3) 

 

Adhesive component is associated with a thin film of water 

that covers surface of the grain and depends on the basic 

properties of the material, such as: the negative pressure of 

pore water in the soil, size of the particles, shape coefficient 

and porosity. The adhesive component is a limited value, since 

it is possible that at low suctions the value of 𝑆𝑎 is greater than 

1; so, the bounded value ensures that for  

𝑆𝑎 ≥ 1, 𝑆𝑎
∗ = 1 and if 𝑆𝑎 < 1, 𝑆𝑎

∗ = 𝑆𝑎  (Equation 4) 

 

𝑆𝑎 = 𝑎𝐶𝜓

(
ℎ𝑐𝑜
𝜓𝑛

)
2/3

𝑒1/3(
𝜓

𝜓𝑛
)

1/6                               (4) 

 

Where 𝑎 is the curve fitting parameter, considered as 7 × 10−4 

for cohesive soils; 𝜓 is the suction; 𝜓𝑛 is the suction term 

introduced to ensure a dimensionless component; 𝑒 is the void 

ratio of the soil and ℎ𝑐𝑜 is the average capillary elevation (cm) 

determined for capillary soils, obtained by Equation 5 for 

granular soils and with Equation 6 for cohesive soils, referring 

its remaining variables in Equations 7 and 8. 

 

ℎ𝑐𝑜 =
𝑏(𝑐𝑚2)

𝑒×𝐷10(𝑐𝑚)
                                    (5) 
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ℎ𝑐𝑜 =
𝜉×(𝐿𝐿)1.75

𝑒
                                    (6) 

 

𝐷10 is the diameter corresponding to 10 % of the granulometric 

curve. 

 

𝑏(𝑐𝑚2) =
0.75 

1,17×𝑙𝑜𝑔𝐶𝑢+1
                           (7) 

 

𝜉 ≈ 0.15𝜌𝑠                                   (8) 

 

Where 𝑏(𝑐𝑚2) is the parameter associated with the uniformity 

coefficient for granular soils; 𝐶𝑢 is the uniformity coefficient; 

𝐿𝐿 is the liquid limit; 𝜉 is the parameter associated with the 

density for cohesive soils and 𝐶𝜓 is the correction coefficient 

that allows reducing the water content for high suctions, based 

on that proposed by Fredlund & Xing (1994), obtained through 

Equation 9. 

 

𝐶𝜓 = 1 −
𝑙𝑛(1+

𝜓

𝜓𝑟
)

𝑙𝑛(1+
𝜓0
𝜓𝑟

)
                               (9) 

 

Where 𝜓0 is the initial suction, considered equal to 10-7 cm and 

𝜓𝑟 is the suction corresponding to the residual water content 

at which point an increase in suction will not remove more 

water from the soil, and is given by Equation 10 for cohesive 

soils.  

 

𝜓𝑟 = 0.86 (
𝜉

𝑒
)

1.2

× 𝐿𝐿1.74                       (10) 

 

From the characteristic curves of unsaturated soils, the 

hydraulic conductivity functions are obtained using the 

method of Fredlund et al. (1994), shown in Equation 11. 

 

𝑘𝑟(𝜓) =
∫

𝜃(𝑒𝑦)−𝜃(𝜓)

𝑒𝑦 𝜃´(𝑒𝑦)𝑑𝑦
𝑏

𝑙𝑛𝜓

∫
𝜃(𝑒𝑦)−𝜃𝑠

𝑒𝑦
𝑏

𝑙𝑛𝜓𝑎𝑒𝑣
𝜃´(𝑒𝑦)𝑑𝑦

                         (11) 

 

Where 𝑘𝑟(𝜓)  is the function of hydraulic conductivity with 

respect to suction; 𝑏 is the upper limit of integration considered 

as 𝑙𝑛(1 000 000); 𝜓 is the soil suction; 𝑒 is the Euler natural 

number (2.71828); y is the dummy integration variable that 

represents the logarithm of the suction; 𝜃´ is the derivative of 

the Fredlund & Xing (1994) model that fits the soil 

characteristic curve; 𝜃(𝜓) is the soil characteristic curve; 𝜓𝑎𝑒𝑣 

is the air input value to the soil and 𝜃𝑠  is the volumetric water 

content of the soil. 

 

One of the fundamental problems in the study of slope stability 

in earthen dams using numerical models is the number of 

independent variables that can be associated with failures 

(Boushehrian et al., 2017; Haramboure et al., 2021; Komasi et 

al., 2019), which limits the ability to generalize research when 

the conditions for which a specific model was generated 

change. 

 

In recent years, hybrid numerical models have been used, 

which combine transient water flow analyzes using the Finite 

Element Method (FEM) with slope stability analysis using any 

of the Limit Equilibrium Methods (LEM) (Jasim et al., 2017; 

Vahedifard et al., 2020). However, the need for generalization 

in the response to highly complex geotechnical problems 

results in the need to create prediction tools. This new 

approach has been promoted in recent years by the application 

of AI algorithms (Beiranvand & Komasi, 2021; Wengang et 

al., 2023). 

 

The primary link between AI and numerical models is since, 

to get a machine to operate and return the expected results, it 

is necessary to carry out a training and testing process, which 

is directly associated with the numerical models, if a 

supervised process. AI models, particularly supervised 

learning models, can be trained with the results obtained from 

numerical models. In this way, the AI model can become an 

alternative that can replace costly repeated executions of 

numerical models. 

 

Currently, the implementation of Artificial Neural Network 

(ANN) tools for the study of engineering problems, 

specifically the slope stability, has gained popularity 

internationally. Various authors (Beiranvand et al., 2019; 

Flores et al., 2021; Komasi et al., 2019; Nanehkaran et al., 

2023; Salazar et al., 2015; Santillán et al., 2014) have used 

them to predict phenomena associated with slope stability, 

obtaining relevant results. These studies have shown that 

ANNs are one of the algorithms with the best results for 

solving slope stability problems. For this fundamental reason, 

it is selected to obtain the prediction models proposed in this 

research. 

 

The construction of ANNs is based on the way biological 

systems process, where neurons are a set of basic units, in 

which information is processed to obtain a response. Neurons 

store information by establishing synaptic weights between the 

input variables of the system, which results in an iterative 

process directly linked to its training. 

 

In the present research, ANN structures are implemented to 

predict the FS in homogeneous earth dams subjected to rapid 

drawdown processes. Hybrid numerical models are carried out 

for various conditions that range from the geometry to the 

speed of the discharge, including the physical and mechanical 

properties of the component soils of the embankment of the 

earth dams studied. The fundamental results show a high 

effectiveness of the ANN models implemented for all 

established time steps. 

 

The fundamental meaning of this study lies in obtaining tools 

for predicting slope stability before rapid drawdown processes 

with ANN combined with the results obtained from numerical 

modeling. Managing to link during this study to partially 

saturated soils in the analyses. The variability of the 

geotechnical properties of soils is a determining element in the 

need to implement tools of this type given their generalization 

capabilities. 

 

2. METHODOLOGY 

 

Three fundamental geometries are established for the study, 

corresponding to dams of 15, 30 and 40 meters high on the 
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embankment. They all have drainage prisms and a foundation 

considered waterproof and non-deformable, since it is the 

object of study in the stability analysis. 

 

The behavior of the embankment was studied in 40 different 

soil variants (Flores et al., 2023), all classified as high or low 

compressibility clays (CL or CH) according to the Unified Soil 

Classification System (SUCS), and whose minimum, average 

and maximum values of the main geotechnical parameters are 

shown in Table 1. 

 
Table 1. General properties of embankment soils 

 

Specific 

weight 

(kN/m3) 

Cohesion 

(kPa) 

Friction 

angle (°) 

Permeability 

(m/s) 

Minimum 16.6 13.8 12.6  4.3 × 10−8 

Half 18.3 31.2 17.6 7.7 × 10−7 

Maximum 19.4 67.5 29.5 7.7 × 10−6 

 

The characteristic curves of all modeled soils are included 

(Figure 1), obtained using the method of Aubertin et al. (2003). 

 

 
Figure 1. Characteristic curves of the embankment soils 

 

From the characteristic curves of unsaturated soils, the 

hydraulic conductivity functions are obtained using the 

method of Fredlund et al. (1994). 

 

To define the external load associated with rapid discharge, 

three speeds of decrease in the water level are established: 0.10 

m/day; 0.15 m/day and 0.30 m/day. Consequently, it is 

considered in all cases that the dams contain the projected 

normal filling level, which corresponds to the height of the 

embankment minus three meters of free edge; and they will be 

unloaded until they are completely empty. 

 

2.1 Database from hybrid numerical models 

 

Construction of the database necessary for the implementation 

of ANN algorithms is obtained using the results corresponding 

to numerical models. In this case, a two-dimensional plane 

strain analysis is used, since the longitudinal displacements are 

constant and the variation of the strains with respect to the 

length can be considered null, therefore, the analysis is 

simplified from a mathematical and computational point of 

view (Fredlund et al., 2019). 

 

In this research, the computational simulation proposed is a 

hybrid type. All the analyzes of the transient leaks were 

obtained using the Finite Element Method (FEM) and the 

stability studies were obtained by the use of the Morgenstern-

Price Method, as one of the most precise among the Limit 

Equilibrium Methods ( LEM) (El-Hazek et al., 2020; Jasim et 

al., 2017; Vahedifard et al., 2020). All of the above is done in 

the GeoStudio (2018) program. 

 

The result of combining three heights for the embankment (15, 

30 and 40 meters), with their associated geometric 

characteristics, as well as 40 combinations of soils and three 

discharge speeds (0.1, 0.15 and 0.3 m/day) yield a total of 360 

models. It is taken into account that the FS were obtained daily 

and that the relationships between speed and height establish 

diversity in terms of duration for each case. Finally, the 

resulting database will have a total of 1.46 × 103  sets of input 

variables with their respective FS as the response variable. 

 

2.2 Nodal structure applied in KNIME 

 

This section presents a model to estimate the FS from the data 

obtained using the numerical models previously described. For 

this prediction, perceptron-type RNA with forward feedback 

is used. To apply the ANN model, the computational tool 

KNIME (or Konstanz Information Miner) is used (Anting, 

2022; Ganasan et al., 2021), which allows the development of 

models in a visual environment.  

 

The KNIME program is conceived as a graphical tool and has 

a series of nodes (that encapsulate different types of 

algorithms) and arrows (that represent the flow of data) that 

are displayed and combined in a graphical and interactive way, 

solving optimization problems using metaheuristics. With the 

application of various nodes, previously implemented, non-

linear problems of a predictive nature can be modeled that can 

be described with mathematical functions without the need for 

programming knowledge. To do this, the work structure shown 

in Figure 2 is established, determinated from the proposal by 

Achong & Guntor (2021). 

 

Of the total numerical modeling results, 13 input variables are 

defined and 360 models are obtained. The description of these 

variables, maximum value, minimum value and average value, 

are shown in Table 2. 

 

Additionally, a general analysis is included with the 13 initial 

variables and a simplified analysis maintaining only six 

variables. The incorporation of a simplified analysis is due to 

the fact that, on occasions, it is not possible to have all the 

geotechnical data collected in the initial model. This would 

imply the impossibility of applying these results in the future. 
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Figure 2. Implemented work methodology for the use of machine learning in the prediction of FS under rapid drawdown 

 

 
Table 2. Input variables defined for the application of the ANN model 

Variable Minimum Half Maximun 

Embankment height (m) 15 30 40 

Crown width (m) 4 - 6 

Specific weight (kN/m³) 16.58 18.31 19.39 

Cohesion (kPa) 13.84 31.20 67.45 

Internal friction angle (°) 12.55 17.58 29.46 

Saturated permeability (m/s) 
4.29
× 10−8 

7.68 × 10−7 
7.75
× 10−6 

Volumetric water content 0.378 0.458 0.553 

Volumetric compressibility index 

(kPa-¹) 

4.00
× 10−5 

8.66 × 10−5 
1.90
× 10−4 

Effective diameter for 60 % (mm) 
7.50
× 10−3 

8.66 × 10−3 0.25 

Effective diameter for 10 % (mm) 2.5 × 10−3 3.9 × 10−3 0.027 

Liquid limit (%) 33.25 53.55 72.05 

Speed (m/day) 0.10 0.15 0.30 

Time (%) 0 % 50 % 100 % 

 

Therefore, by presenting a simpler model, with fewer input 

geotechnical variables, a greater possibility of data being 

available in other cases is more feasible. For all these reasons, 

the following are selected: height of the embankment, 

fundamental physical-mechanical properties (specific weight, 

cohesion and angle of internal friction), speed drawdown and 

time. 

 

Of the total of the resulting numerical models, 70 % of them 

are established for training and the remaining 30 % are used to 

test the ANN models obtained (Beiranvand et al., 2019; Jabbar 

& Muataz, 2021). This partition is done randomly using a node 

available in KNIME with this function. 

 

2.3 ANN Calibration 

 
A perceptron-type ANN with forward feedback is used (Bui et 

al., 2019; Flores et al., 2021; Maneta & Shnabel, 2003; 

Montoya, 2018; Santillán et al., 2014). The main idea of RPOP 

is to accelerate the minimization of error in the neural 

networks learning process by using a local approach for 

weight-updating that overcomes some negative aspects of the 

pure gradient-based approach. Initially this node (RPROP) has 

a default configuration (Riedmiller & Braun, 1993); however, 

it is necessary to carry out a calibration process to obtain the 

optimal number of neurons and hidden layers for the 

phenomenon analyzed as shown in Figure 3. 

 

As shown in Figure 3 the structure resulting from this analysis 

is composed of  1 × 104 iterations, 2 hidden layers and 10 

neurons per layer, for both proposed models. Furthermore, for 

both configurations with the selected structure, an adjusted 

coefficient of determination R2 greater than 97 % and errors 

close to 8 % are obtained. The final structure resulting from 

this analysis for both proposals is shown in Figure 4. The 

details and hyperparemeters associated with the implemented 

RPROP algorithm were described by Riedmiller & Braun 

(1993).  

 

The error obtained in the training phase was 1.107 for the 

general model and 1.120 for the simplified model. Based on 

the criterion established by Riedmiller & Braun (1993), they 

state that if the error reaches values of up to 1.2, it can be 

considered a good fit for the trained AN.
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Figure 3. Tested configurations for calibrating Artificial Neural Network for rapid drawdown 

  

 

 
Figure 4. Artificial Neural Network structures implemented for rapid drawdown (a) with 13 input variables and (b) with six input variables 

 
Figure 5. Behavior of the FS as a function of time for the 30-meter geometry 
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In Figure 5 the decrease in FS during rapid drawdown is 

abrupt. When up to 20 % of the total time has passed the FS 

has decreased between 50 % to 60 % compared to its initial 

value (always greater than 1.5; therefore, it is considered stable 

and safe). Then between 20 % and 50 % of the total time the 

decrease in FS reaches values between 60 % and up to 100 % 

potentially endangering the safety of the slope (if values lower 

than 1 are reached during the process) with the own 

repercussions related to its possible failures. However, the 

maximum recovery of FS does not exceed 30 % of the initial 

value oscillating mostly below 15 %. 

 

This behavior is sustained for the geometries of 15 and 40 

meters of embankment height which is reflected in Table 3, 

which shows the extreme values of FS recovery as a function 

of time for all the cases studied. 

 
Table 3. FS recovery intervals as a function of time for the three geometries 

studied 

 15 meters 30 meters 40 meters 

Recovery time interval 
52 % 56 % 56 % 

88 % 85 % 85 % 

 

Additionally, it was observed that for the same geometry, there 

is a variation in these intervals when the speed of occurrence 

of the discharge is modified. However, this variation is less 

than 5 % in all the cases analyzed and for the three speeds 

considered so it is considered irrelevant for these analyses. 

From this study, it is recommended to take into account that 

the recovery interval of the FS during drawdown is wide 

(around 30 % of the time) a behavior that can be associated 

with the fluctuation of the physical-mechanical properties of 

the component soils of the embankment, in particular 

cohesion, a parameter that presents a high variability in the 

study despite the fact that all the soils studied are clays with 

similar classifications (CL or CH). 

 

3.1 Predictive models with ANN 

 
Understanding the internal functioning of ANNs and how the 

model is obtained is extremely complex and currently receives 

a lot of attention (Barredo-Arrieta et al., 2020). In fact, the field 

of Explainable AI (XAI) is dedicated to trying to make 

understandable these models, which achieve high precision but 

are difficult to understand. For all these reasons, Table 4 shows 

the results corresponding to the biases and the weights 

corresponding to the simplified model. 

 

In Table 4, the colors show how the weights and bias are 

distributed between the neurons of the different layers of the 

ANN. The intermediate layers of ANNs do not have a 

predefined meaning, but rather function as hidden 

characteristic variables that the model detects from the data 

(Barredo-Arrieta et al., 2020). It is observed (Table 4) that the 

weights with small values, close to 0 (in yellow) are the 

predominant ones in the model. In this case, this behavior is 

observed in the first layer between variable 4 (velocity) and 

neuron 7. Extremely negative values (in red) mean that the 

neuron opposes the values taken by the corresponding 

variable. Extremely positive values (in green) mean that the 

neuron adds to the values of the corresponding variable. In the 

first layer there are no high addition relationships between any 

of the variables. However, in the second layer, these addition 

relations are presented in variables 0 and 8. As for the third 

layer (output), the red values of neuron 8 imply that the growth 

of this variable is inversely proportional to the value of the FS.  

Once the training of each of the applied ANN structures has 

been carried out the test results are shown between the 

numerical model and the prediction obtained for the 

configuration with 13 and six input variables (Figure 6). 

 

From the results shown in Figure 6, a good fit between the 

original values and those predicted by the tool for these 

analyses can be considered. The robustness of the predictions 

concerning the results obtained with the numerical model 

guarantees high precision when applying tools based on 

Artificial Intelligence such as ANN to solve complex 

geotechnical problems such as the stability of slopes against 

the effects of rapid drawdown. Furthermore, the results 

presented in this research guarantee two approaches: a general 

one, which includes all the soil parameters involved in the 

analysis and a simplified one, which is of vital importance, 

since it is known that it is not always possible to have all the 

variables geotechnical techniques resulting from soil studies. 

The nodes trained from this analysis can be used to make other 

predictions for cases not considered in this research. 

 

4. CONCLUSIONS 

 

Rapid drawdown can be caused by phenomena such as drought 

or operational changes. Hybrid modeling of this phenomenon 

to obtain FS on earthen dam slopes allows modeling these 

transient water flow problems, considering unsaturated soils. In 

these cases, the reduction of the FS is observed with the 

consequent loss of stability and safety of the upstream slope. 

 

A meticulous examination of results derived from numerical 

models enables a discerning evaluation of the fluctuation in FS 

during rapid drawdown processes, as outlined in the cited 

literature. This underscores the imperative to delve into the 

study of this phenomenon and its potential ramifications for the 

optimal operation of reservoir. 

 

Thorough analyses and numerical normalization within the 0 to 

1 scale reveal distinct trends. The rapid decline in FS is notably 

abrupt, especially within the initial 20 % of the total elapsed 

time, resulting in reduction of approximately 60 % FS. The 

pivotal points, marking the minimum FS, occurs within the 

50 % to 90 % timeframe of the overall drawdown duration. This 

phase is followed by a recuperative period, associated with the 

stabilization of pore pressures within the embankment. 

Substantially, the FS recovery typically does not surpass 15 % 

of the previously attained minimum FS.  

 

The intervals of FS recovery exhibit slight variation (less than 

5 %) for identical geometries, contingent on the drawdown 

velocity. Consequently, these intervals are not deemed 

representative for the analyses. The notable fluctuations in FS 

recovery values are linked to the variation in the physical-

mechanical properties of the constituent soils within the 

embankment. 
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Table 4. Bias and weights obtained for the simplified model

Layer 1 

From .. To 0 1 2 3 4 5 6 7 8 9 

Bias 0.030 -0.066 0.843 1.454 0.476 -9.626 8.511 -7.110 2.291 -10.835 

0 0.019 -0.466 0.939 -0.635 -0.037 0.039 0.046 -0.800 0.307 0.011 

1 -0.607 -0.297 0.232 0.176 0.307 0.272 -0.751 -0.302 -0.792 -0.617 

2 0.097 -1.024 0.535 0.781 -0.071 0.042 -0.047 -0.411 0.049 0.833 

3 0.187 -0.775 1.462 -1.427 -0.137 0.029 0.070 0.584 -0.105 0.126 

4 2.020 -0.947 0.068 0.079 0.925 0.809 1.406 -44.429 2.469 -4.906 

5 -0.158 -0.693 1.055 -0.002 -0.001 0.039 0.053 0.499 0.003 -0.001 

Layer 2 

From .. To 0 1 2 3 4 5 6 7 8 9 

Bias -0.360 1.663 0.155 8.620 -30.089 -1.880 0.470 -0.440 -0.493 1.316 

0 -46.073 379.916 105.783 165.350 -535.732 -1 812.534 1.029 -3.517 -493.827 -5.212 

1 0.427 0.023 0.025 -0.531 -1.176 -0.548 -0.788 -0.560 -0.799 0.520 

2 -0.066 0.728 -0.209 8.448 -30.843 -2.677 0.265 0.001 0.119 0.081 

3 -36.388 -2.262 0.296 -63.370 45.577 0.157 0.701 1.890 85.389 -3.731 

4 14.036 -1.498 -1.273 -6.206 39.345 3.261 -2.786 1.446 -7.202 -0.960 

5 10.342 17.420 -1.122 -11.172 0.379 1.062 -0.823 1.193 -2.927 -0.784 

6 -15.857 -14.630 -4.783 2.096 -4.139 -0.674 0.985 0.337 3.487 -1.373 

7 -0.368 -0.098 0.767 -0.590 65.012 -0.092 -0.019 -1.372 -0.431 0.631 

8 432.344 -1.477 -0.196 257.829 7.994 0.455 -0.795 0.679 -1.977 201.731 

9 2.476 -1.942 0.839 27.349 2.959 -0.307 -0.531 -0.085 -97.204 -1.113 

Layer 3          

From .. To 0          

Bias -0.115          

0 -1.873          

1 0.632          

2 0.583          

3 1.839          

4 -0.183          

5 -2.356          

6 2.125          

7 -0.993          

8 -129.721          

9 -0.915          

 

After carrying out the corresponding analyses, adjusted R2 

determination coefficients greater than 97 % and mean absolute 

errors close to 8 % were obtained for both applied ANNs. The 

results show that it is possible to successfully train and test 

ANN structures for complex geotechnical phenomena, such as 

the stability of slopes in earthen dams subjected to rapid 

drawdown. 

 

The results obtained in this research can be used in subsequent 

research, as well as the trained and tested ANN models. In 

subsequent research, it is recommended to include other types 

of AI tools, as well as to study other complex phenomena that 

unfavorably influence the stability of slopes in dams, such as 

precipitation. 
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Figure 6. Relationship between the numerical model and the prediction with the Artificial Neural Network with 13 and six input variables for the Factor of 

Safety with rapid drawdown 
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