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Resumen: El objetivo de este artículo es probar que bajo ciertas hipótesis sobre la nolinearidad y la condición inicial, la
solución de un sistema cooperativo de reacción-difusión fraccionario converge a la solución positiva más pequeña de
estado estable. Además, probamos que esta convergencia es exponencial en tiempo y que el exponente de propagación
depende del primer valor propio de la derivada del término de reacción y del índice más pequeño de los Laplacianos
fraccionarios.
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Abstract: The aim of this paper is to prove that under some appropriate assumptions on the nonlinearity and the initial
datum, the solution of the fractional reaction-diffusion cooperative system converge to the smallest positive steady
solution. Also, we prove that this convergence is exponential in time and that the exponent of propagation depends on
the principal eigenvalue of the derivative of reaction term and on the smallest index of the fractional laplacians.

Keywords: Fractional Laplacian, nonlinear reaction-diffusion equation, cooperative systems, asymptotic propagation,
steady state solution.

1. INTRODUCTION

Reaction-diffusion models have found widespread appli-
cability in a surprising number of real-world models, in-
cluding areas as, chemistry, biology, physics and enginee-
ring. But not only physical phenomena can be the result
of a diffusive models. Stochastic processes in mathema-
tical finance are often modeled by a Wiener process or
Brownian motion, which lead to diffusive models. The
simplest reaction-diffusion models are of the form

ut − ∆u = f (u) (1)

where f is a nonlinear function representing the reaction
kinetics. One of the most important examples of parti-
cular interest for us include the Fisher-KPP equation for
which f (u) = u(1 − u). The nontrivial dynamics of these
systems arises from the competition between the reaction
kinetics and diffusion.
At a microscopic level, diffusion is the result of the ran-
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dom motion of individual particles, and the use of Lapla-
cian operators in the model rests on the key assumption
that this random motion is an stochastic Gaussian pro-
cess. However, a growing number of works have shown
the presence of anomalous diffusion processes, as for
example Lévy processes, thus, reaction-diffusion equa-
tions with fractional Laplacian instead of standard Lapla-
cian appear in physical models when the diffusive phe-
nomena are better described by Lévy processes allowing
long jumps, than by Brownian processes, see for example
[10] for a description of some of these models. The Lévy
processes occur widely in physics, chemistry and biology
and recently these models that give rise to equations with
the fractional Laplacians have attracted much interest.
The reaction diffusion equation (1) with Fisher-KPP non-
linearity has been the subject of intense research since the
seminal work by Kolmogorov, Petrovskii, and Piskunov
[8]. Of particular interest are the results of Aronson and
Weinberger [1] which describe the evolution of the com-
pactly supported data. They showed that for a compactly
supported initial value u0, the movement of the fronts are
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linear in time. In addition, there exists a critical speed
c∗ = 2

√
f ′(0) for which the problem (1) admits planar

traveling wave solutions connecting 0 and 1, that is, so-
lutions of the form u(t, x) = ϕ(x − ct), which move with
speeds c ≥ c∗.
Moreover, Berestycki, Hamel and Roques [2] prove exis-
tence and uniqueness results for the stationary solution
associated to (2) and they then analyze the behavior of
the solutions of the evolution equation for large times.
These results are expressed by a condition on the sign of
the first eigenvalue of the associated linearized problem
with periodicity condition.
In the fractional case, the anomalous diffusion problems
is focussed to the study of large-time behavior of the
solution of the Cauchy problem for fractional reaction-
diffusion equations{

∂tu + (−△)αu = f (u), t > 0, x ∈ Rd,
u(0, x) = u0(x), x ∈ Rd,

(2)

with α ∈ (0, 1) in one spatial dimension, where (−∆)α

denote the fractional Laplacian. The nonlinearity f is as-
sumed to be in the Fisher-KPP class. More precisely, the
nonlinearity is assumed to have two zeros, an unstable
one at u = 0 and a stable one at u = 1.
Regarding (2) with α ∈ (0, 1) and Fisher-KPP nonlinea-
rity, in connection with the discussion given above for
the case α = 1, in the recent papers [4] and [5], Ca-
bré and Roquejoffre show that for compactly supported
initial value, or more generally for initial values deca-
ying like |x|−d−2α, where d is the dimension of the spatial
variable, the speed of propagation becomes exponential
in time with a critical exponent c∗ = f ′(0)(d + 2α)−1,
they also show that no traveling waves exists for this
equation, all results in great contrast with the case α =
1. Additionally we recall the earlier work in the case
α ∈ (0, 1) by Berestycki, Roquejoffre and Rossi [3], whe-
re it is proved that there is invasion of the unstable state
by the stable one, also in [3], the authors derive a class
of integro-differential reaction-diffusion equations from
simple principles. They then prove an approximation re-
sult for the first eigenvalue of linear integro-differential
operators of the fractional diffusion type, they also prove
the convergence of solutions of fractional evolution pro-
blem to the steady state solution when the time tends to
infinity.
The study of propagation fronts was also done in reaction
diffusion systems, in this line, Lewis, Li and Weinberger
in [9], studied spreading speeds and planar traveling wa-
ves for a particular class of cooperative reaction diffusion
systems with standard diffusion by analyzing traveling
waves and the convergence of initial data to wave solu-
tions. It is shown that, for a large class of such cooperative
systems, the spreading speed of the system is characteri-

zed as the slowest speed for which the system admits tra-
veling wave solutions. Moreover, the same authors in [11]
establish the existence of a explicit spreading speed σ∗

for which the solution of the cooperative system spread
linearly in time, when the time tends to +∞.
Follow the line, when the standard Laplacians are repla-
ced for instance by the fractional Laplacian with different
indexes in a reaction diffusion cooperative systems, [6]
states that the propagation speed of the solution is expo-
nential in time with an exponent depending on the sma-
llest index of the fractional Laplacians and of the princi-
pal eigenvalue of the matrix DF(0) where F is the nonli-
nearity associated to the fractional system.
The aim of this paper is to prove that under some appro-
priate assumptions on the nonlinearity and the initial
datum, the solution of the fractional reaction-diffusion
cooperative systems converge to the smallest positive
steady solution. Also, we prove that this convergence is
exponential in time with the exponent given in [6]. More
precisely, we focus on the large time behavior of the so-
lution u = (ui)

m
i=1, for m ∈ N∗, to the fractional reaction-

diffusion system:{
∂tui + (−△)αi ui = fi(u), t > 0, x ∈ Rd,

ui(0, x) = u0i(x), x ∈ Rd,
(3)

for all i ∈ J1, mK := {1, ..., m}, where

αi ∈ (0, 1] and α := mı́nJ1,mK αi < 1.

The operator (−△)αi is the Fractional Laplacian defined
by

(−∆)αi u(x) = C(d, αi)P.V.
∫

Rd

u(x)− u(y)
| x − y |d+2αi

dy

where the principal value is taken as the limit of the inte-
gral over Rd \ Bε(x) as ε → 0 and C(d, α) is a constant that
depends on αi. Note, when αi = 1, then (−△)αi = −△.
As general assumptions, we impose, for all i ∈ J1, mK,
the initial condition u0i to be nonnegative, non identically
equal to 0, continuous and to satisfy

u0i(x) = O(|x|−(d+2αi)) as |x| → +∞. (4)

We also assume that for all i ∈ J1, mK, the function fi ∈
C1(Rm) satisfies fi(0) = 0 and that system (3) is coopera-
tive, which means:

∂j fi > 0, on Rm, for all j ∈ J1, mK, j ̸= i. (5)

For what follows and without loss of generality, we
suppose that αi+1 ≤ αi for all i ∈ J1, m − 1K so that
α = αm < 1. Before to continue, we need some additional
hypotheses on the nonlinearity F = ( fi)

m
i=1, hence, for all

i ∈ J1, mK.
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(H1) The principal eigenvalue λ1 of the matrix DF(0) is
positive,

(H2) F is concave, DF(0) is a symmetric matrix and
∂ fi(0)

∂ui
> 0 for all i ∈ J1, mK.

(H3) There exists Λ > 1 such that, for all s = (si)
m
i=1 ∈ Rm

+
satisfying |s| ≤ Λ,

D fi(0)s − fi(s) ≤ cδ |si|1+δ ,

(H4) For all s = (si)
m
i=1 ∈ Rm

+ satisfying |s| ≥ Λ, we have
fi(s) ≤ 0,

(H5) F = ( fi)
m
i=1 is globally Lipschitz on Rm,

where the constant cδ is positive and independent of i ∈J1, mK and

δ ≥ 2
d + 2α

.

To state the main result, we consider ϕ the positive cons-
tant eigenvector of DF(0) associated to the first eigenva-
lue λ1. Thus λ1 > 0 and ϕ > 0 satisfy

(L − DF(0))ϕ = −λ1ϕ

ϕ > 0, ∥ϕ∥ = 1

where L = diag((−△)α1 , ..., (−△)αm). Now, let consider
the autonomous system

∂tχε(t) = F(χε(t)) (6)
χε(0) = εϕ

thus, there exists ε′ > 0 such that, for each ε ∈ (0, ε′)
we can find a constant u+

ε > 0 satisfying χε(t) ↗ u+
ε as

t → +∞, also F(u+
ε ) = 0. We define

u+ = ı́nf
ε∈(0,ε′)

u+
ε

since F is continuous, we deduce that F(u+) = 0, therefo-
re u+ is a constant steady state solution of (4). Also, since
the function F is positive in a small positive values close
to zero, we have that u+ > 0. Before to state the main
result, in which we prove that the solution of (3) conver-
ge to u+ exponentially fast in time, we assume that the
initial condition u0 satisfies

u0 ≤ u+ in Rd (7)

Theorem 1.1 Let d ≥ 1 and assume that F satisfies (5) and
(H1) to (H5). Let u be the solution to (3) with u0 satisfying (4)
and (7). If c < λ1

d+2α , then

lı́m
t→+∞

ı́nf
|x|≤ect

|ui(t, x)− u+
i | = 0

for all i ∈ J1, mK.

2. STEADY STATE SOLUTION

Recall that the operator A = −diag((−∆)α1 , . . . , (−∆)αm)
is sectorial (see [7]) in (L2(Rd))m, with domain D(A) =
H2α1(Rd)× . . . × H2αm(Rd). Thus, since u0 ∈ (L2(Rd))m,
the Cauchy Problem (3) has a unique sectorial solution
u ∈ C((0, ∞), D(A)) ∩ C([0, ∞), (L2(Rd))m) and du

dt ∈
C((0, ∞), (L2(Rd))m).
We prove Theorem 1.1 through a sequence of lemmas. Let
BR(0) be the open ball of Rd, with center 0 and radius R,
also, we denote BR(0)c = Rd \ BR(0). Now, let us call uR
the unique solution of the elliptic system

(−△)αi uR
i = fi(uR), in BR(0) (8)

uR = 0 on BR(0)c

uR > 0 on BR(0)

for all i ∈ J1, mK.

Lemma 2.1 Let ε > 0 and assume that F satisfies (5) and
(H1) to (H3). There exists R > 0 such that the solution vR of
the system

∂tvR
i + (−△)αi vR

i = fi(vR), t > 0, x ∈ BR(0) (9)

vR(t, x) = 0 on [0, ∞)× BR(0)c

0 < vR(0, x) ≤ mı́n(ε, uR), on BR(0).

satisfies

lı́m
t→+∞

vR(t, x) = uR(x) ∀ x ∈ B1(0)

Proof: Let ϕR be the positive eigenvalue associated to λR
in the ball BR(0), thus ϕR and λR satisfy

(L − DF(0))ϕR = λRϕR in BR(0)

ϕR > 0 in BR(0), ϕR = 0 in BR(0)c,
∥∥∥ϕR

∥∥∥ = 1

Now, following the computations in [3], by (H2), we can
deduce that λR given by the minimum of

1
2 ∑m

i=1
∫

Rd

(∫
Rd

(ϕi(x)−ϕi(y))2

|x−y|d+2α dy
)

dx

∑m
i=1

∫
BR(0)

ϕi(x)2 dx

−

∫
BR(0)

[DF(0)ϕ(x)] · ϕ(x) dx

∑m
i=1

∫
BR(0)

ϕi(x)2 dx

taken over all functions ϕ ∈ C1(BR(0)) ∩ C(BR(0)), ϕ ̸≡
0, vanishing on ∂BR(0) and extended by 0 outside BR(0),
where the minimum is uniquely (up to a multiplicati-
ve constant) attained by the principal eigenfunction ϕR,
converges to −λ1 when R goes to infinite, moreover, by
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hypothesis (H1) we have that λ1 > 0, thus, we can find
R > 0 large enough such that λR < 0.
Since uR and vR satisfy (8) and (9) in the ball BR(0), uR =
vR = 0 in BR(0)c and vR(0, · ) ≤ uR( · ) in Rd, then, by the
maximum principle, we have that vR(t, x) ≤ uR(x) for all
t > 0 and x ∈ Rd.

Let wR be the solution of

∂twR
i + (−△)αi wR

i = fi(wR), t > 0, x ∈ BR(0) (10)

wR(t, x) = 0 on [0, ∞)× BR(0)c

wR(0, x) = kϕR(x), on BR(0).

Taking k > 0, we deduce

fi(kϕR) ≥ kD fi(0)ϕR − ck1+δ(ϕR
i )

1+δ

Therefore, it follows from the above inequality and by the
definition of ϕR that

(−△)αi kϕR
i − fi(kϕR) = kϕR

i

(
λR + ckδ(ϕR

i )
δ
)
≤ 0

in BR(0), for all i ∈ J1, mK, taking k small enough and sin-
ce λR < 0. Then kϕR is a subsolution of (8) in the ball
BR(0). Thus wR is nondecreasing in time t. Moreover, ta-
king k > 0 small if necessary, wR(0, x) ≤ vR(0, x) in Rd,
thus

wR(t, x) ≤ vR(t, x), ∀ t > 0, x ∈ BR(0)

Finally, one has

wR(t, x) ≤ vR(t, x) ≤ uR(x), ∀ t > 0, x ∈ BR(0)

Since wR is nondecreasing in time t, standard elliptic es-
timates imply that wR converges locally to a stationary
solution w∞(≤ uR) of (10). But since uR is the unique so-
lution of (8), we conclude that vR(t, x) → uR(x) in BR(0)
and then, we conclude the convergence in B1(0).

Remark 2.1 Let us note that for each y ∈ Rd, if x ∈ B1(y)
then x − y ∈ B1(0). Thus taking σ = (σ)m

i=1 > 0, as a conse-
quence of Lemma 2.1, there exist R > 0 and Tσ > 0 that not
depend of y, such that, for all t ≥ Tσ

|vR
i (t, x − y)− uR

i (x − y)| ≤ σi ∀ x ∈ B1(y)

for each i ∈ J1, mK.

The proof of Theorem 1.1 essentially relies on the follo-
wing property in which we prove that any steady state
solution of (3) is bounded from below away from zero.

Lemma 2.2 Let d ≥ 1 and assume that F satisfies (5) and
(H1) to (H3). Let v be any positive, bounded, continuous solu-
tion of

(−△)αi vi = fi(v), ∀ i ∈ J1, mK (11)

Then, there exists ε > 0 small enough such that v ≥ εϕ in Rd.

Proof: In what follows, we prove that there exists a cons-
tant vector k > 0 such that v ≥ k in Rd. Let y ∈ Rd be any
arbitrary fixed vector, we note that v( · + y) continue sa-
tisfying (11), moreover, for each R > 0, there exists a cons-
tant ky,R > 0 such that v(x + y) ≥ ky,R for all x ∈ BR(0).
Now, let consider the system

∂twR
i + (−△)αi wR

i = fi(wR), t > 0, x ∈ BR(0) (12)

wR(t, x) = 0 on [0, ∞)× BR(0)c

0 < wR(0, x) ≤ mı́n(ky,R, uR), on BR(0)c

Since v( · + y) ≥ wR(0, · ) in Rd, by the maximum prin-
ciple, we have that

v(x + y) ≥ wR(t, x) ∀(t, x) ∈ [0, ∞)× Rd (13)

Now, by Lemma 2.1, there exists R > 0 large enough such
that wR(t, x) converges to uR(x), as t → +∞ for all x ∈
B1(0). Hence, taking the limit when t tends to +∞ in (13),
we have that

v(x + y) ≥ uR(x) ∀ x ∈ B1(0)

Furthermore, taking x = 0 and since y ∈ Rd is arbitrary,
we conclude

v(y) ≥ uR(0) := k ∀ y ∈ Rd

Finally, we take ε > 0 small enough such that k ≥ εϕ.

In the following result we state a relation between the sta-
tionary solution in the ball BR(0) and the stationary solu-
tion in the whole space.

Lemma 2.3 Let d ≥ 1 and assume that F satisfies (5) and
(H1) to (H3). Let uR be the solution of the system

(−△)αi uR
i = fi(uR), ∀x ∈ BR(0) (14)

uR = 0 on Rd \ BR(0)
uR > 0 on BR(0)

then, uR converges to u+ as R → +∞, locally on compact sets.

Proof: Let R < R′ and x ∈ BR′ \ BR, thus uR(x) = 0,
fi(uR) = 0 and (−

a
)αi uR

i (x) ≤ 0, then we have that uR

is a subsolution of (14) on BR′ , hence, we conclude uR ≤
uR′

and therefore the sequence {uR} is nondecreasing in
R. Moreover, since u+ is a supersolution of (14) for all
R > 0, we have that uR ≤ u+ for all radius R. Hence, the
sequence {uR} is nondecreasing, bounded and by elliptic
estimates converges in compact sets to a positive solution
v ≤ u+ of (11). Now, since F(u+) = 0, then u+ satisfies
the system (11) and by Lemma 2.2, there exists ε > 0 such
that v ≥ εϕ in Rd. Thus, we deduce that v(x) ≥ χε(t) for
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all t ≥ 0 and x ∈ Rd, where the function χε satisfies (6).
Therefore, taking t → +∞ and by the definition of u+,
we deduce that

v(x) ≥ u+
ε ≥ u+, ∀ x ∈ Rd

Since v ≤ u+, we conclude that v ≡ u+.

Remark 2.2 As a consequence of Lemma 2.3, for each σ =
(σ)m

i=1 > 0 and y ∈ Rd, there exists Rσ > 0 that not depends
of y, such that, for all R ≥ Rσ

|uR
i (x − y)− u+

i | ≤ σi ∀ x ∈ B1(y)

for each i ∈ J1, mK.

3. PROOF OF MAIN RESULT

Now, we can prove our main result.
Proof of Theorem 1.1: First, since u0(x) ≤ u+ and u+

satisfies the equation (3), by the maximum principle, we
deduce that u(t, x) ≤ u+. Now, let c < λ1

d+2α , we take

c < c1 < c2 < λ1
d+2α fixed, thus by Theorem 1.1 of [6],

there exists τ > 0 and ε = (εi)
m
i=1, such that

ui(s, x) > εi, for all s ≥ τ and |x| ≤ ec2s (15)

where u = (ui)
m
i=1 is the solution of (3).

Let σ > 0, by the Remarks 2.1 and 2.2, we can find Rσ > 0
and Tσ > 0 large enough such that for R ≥ Rσ and s ≥
Tσ, we have

|vR
i (s, x − y)− uR

i (x − y)| ≤ σi
2

(16)

and

|uR
i (x − y)− u+

i | ≤
σi
2

(17)

for all y ∈ Rd, x ∈ B1(y) and i ∈ J1, mK. In what follows,
taking R ≥ Rσ and τ large if necessary such that

R < ec2τ − ec1τ , ec1Tσ < e(c1−c)τ

we consider y ∈ {z : |z| + R ≤ ec2s} with s ≥ τ. Then
by (15), vR(0, · − y) defined on BR(y) as in the Lemma
2.1 is a subsolution of (3) for times larger than s and for
all x ∈ Rd. Thus, by the maximum principle and (16), we
have that

ui(ω + s, x) ≥ uR
i (x − y)− σi

2

for all ω ≥ Tσ and x ∈ B1(y). Moreover, since R ≥ Rσ

and taking ω = Tσ, by (17)

ui(s + Tσ, x) ≥ u+
i − σi, for all x ∈ B1(y)

Furthermore, since {z : |z| ≤ ec1s} is a compact set, we
can find a finite number of vectors y1, ..., yk, such that∪k

i=1 B1(yi) cover {z : |z| ≤ ec1s}. Thus, we have

ui(s + Tσ, x) ≥ u+
i − σi for all |x| ≤ ec1s

Then, taking t = s + Tσ ≥ τ + Tσ

ui(t, x) ≥ u+
i − σi for all |x| ≤ e−c1Tσ ec1t

thus, we conclude the proof taking τσ := τ + Tσ and by
election of τ, we have that

ui(t, x) ≥ u+
i − σi for all |x| ≤ ect.
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