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Resumen: El objetivo de este artículo es estudiar la existencia y unicidad de soluciones de sistemas no-locales cuando los
términos de difusión están dados por un generador infinitesimal de operadores fuertemente continuos de operadores
lineales acotados.
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Abstract: The aim of this paper is to study the existence and uniqueness of solutions to nonlocal systems when the
diffusion terms are given by infinitesimal generators of strongly continuous semigroups of bounded linear operators.
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1. INTRODUCTION

In this paper we discuss the existence and uniqueness of
solutions u = (ui)

m
i=1 with m ∈ N∗, to the nonlocal sys-

tem: {
∂tu + Au = F(t, u), ∀ t ∈ (0, ∞)

u(0) = u0, (1)

where A = diag(A1, ..., Am) with Ai the infinitesimal ge-
nerator of a strongly continuous semigroup of bounded
linear operators Tt,i in the Banach space X for all i ∈J1, mK := {1, ..., m}, u0 ∈ Xm and F : [0, ∞)× Xm → Xm

a given valued function, where Xm is the Banach product
space doted with the norm ∥u∥Xm = ∑m

i=1 ∥ui∥X .
The above nonlocal problem (1) with m = 1 has been stu-
died extensively. Byszewski and Lasmikanthem [3], [4],
[6] give the existence and uniqueness of mild solutions
when F satisfies locally Lipschitz-type conditions. Cabré
and Roquejoffre in [7] state the existence of global clas-
sical solutions when the reaction term satisfies globally
Lipschitz conditions. In [9] Lin and Liu discuss the semi-
linear integro-differential equations under Lipschitz-type
conditions. Ntougas and Tsamatos [10], [11] study the ca-
se of compactness conditions on Tt. Byszewski and Ak-
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ca [5] give the existence of functional-differential equa-
tion when Tt is compact. Benchohra and Ntouyas [2] dis-
cuss the second order differential equations with nonlocal
conditions under compact conditions. In [8] Fu and Ez-
zinbi study the neutral functional differential equations
with nonlocal initial conditions. Aizicovici and McKib-
ben [1] give the existence of integral solutions of nonli-
near differential inclusions with nonlocal conditions.
The work on the single equation can be extended to the
system (1), thus, as general assumptions, the reaction
term F = ( fi)

m
i=1 satisfies for all i ∈ J1, mK:

fi ∈ C1([0,+∞)× Xm; X), (2)
fi(t, · ) is globally Lipschitz in Xm uniformly in t ≥ 0,

Our main result states the existence and uniqueness of
mild solutions, where, by a mild solution of the nonlocal
system (1) we mean the function u ∈ C([0, ∞), X)m which
satisfies

u(t) = Ttu0 +
∫ t

0
Tt−sF(s, u(s))ds (3)

where Tt = diag(Tt,1, ..., Tt,m).

Theorem 1.1 Let X be a Banach space, F satisfies (2) and the
initial condition u0 belongs to Xm. Then, the system (1) has a
unique mild solution u ∈ C([0, ∞), X)m.
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As a corollary of this theorem, we see that the unique
mild solution can be obtained by an iterative process.

Corollary 1.1 The mild solution u of (1) can be obtained as
the limit in the C([0, ∞), X)m-norm of the sequence (un)n∈N,
where:

un+1(t) = Ttu0 +
∫ t

0
Tt−sF(s, un(s))ds

with u0(t) = Ttu0.

Finally, to state the following result of existence, we assu-
me a perturbation of the nonlinear term. Hence:

Lemma 1.1 If u is the mild solution of the system (1) with
u0 ∈ Xm, F satisfies (2) for all i ∈ J1, mK. Then, for any l ∈ R,
ũ(t) = eltu(t) is the mild solution of the system (1) with u0 ∈
Xm and F(t, u) replaced by F̃(t, ũ) = lũ + eltF(t, e−ltũ).

2. THE SEMIGROUP AND ITS GENERATOR

Taking i ∈ J1, mK fixed throughout this short section, we
remember that a family Tt,i with 0 ≤ t < ∞ of bounded
linear operators from X into X is a semigroup on the Ba-
nach space X if

i) T0,i = I, where I is the identity operator on X.

ii) Tt+s,i = Tt,iTs,i for every t, s ≥ 0

A semigroup of bounded linear operators, Tt,i, is uni-
formly continuous if

lı́m
t↓0

∥Tt,i − I∥ = 0

The linear operator Ai defined by

D(Ai) =

{
x ∈ X : lı́m

t↓0

Tt,ix − x
t

exists
}

and

−Aix = lı́m
t↓0

Tt,ix − x
t

=
dTt,ix

dt
|t=0 for x ∈ D(Ai)

is the infinitesimal generator of the semigroup Tt,i, D(Ai)
is the domain of −Ai. From the above discussion it is
clear, if Tt,i is a uniformly continuous semigroup of boun-
ded linear operators, then

lı́m
s↓t

∥Ts,i − Tt,i∥ = 0

Moreover, a semigroup Tt,i with 0 ≤ t < ∞, of bounded
linear operators on X is a strongly continuous semigroup
if

lı́m
t↓0

Tt,ix = x, for every x ∈ X

Next, a useful fact for future purposes. If Tt,i is a strongly
continuous semigroup, then there exist constants Mi ≥ 1
and ωi ≥ 0 such that

∥Tt,i∥ ≤ Mieωit for 0 ≤ t < ∞

3. MAIN RESULTS

Proof of Theorem 1.1. Given any T > 0, we are interested
in the nonlinear problem{

∂tu + Au = F(t, u), in (0, T)
u(0) = u0, (1)

where A = diag(A1, ..., Am), u = (ui)
m
i=1 and u0 ∈ Xm.

We define the map

Nu0(u)(t) := Ttu0 +
∫ t

0
Tt−sF(s, u(s))ds (2)

here Tt = diag(Tt,1, ..., Tt,m).
Let us prove, if u ∈ C([0, T]; X)m then Nu0(u) ∈
C([0, T]; X)m, i.e., Nu0 : C([0, T]; X)m → C([0, T]; X)m, in-
deed, since u ∈ C([0, T]; X)m, then u ∈ C([0, T]; Xm) and
since Fi ∈ C([0,+∞) × Xm; X), we have that Fi( · , u) ∈
C([0,+∞); X). Now, since u0 ∈ X and T > 0, it is easy to
see that Nu0,i(u) ∈ C([0, T]; X).
Furthermore, we claim that Nu0 is Lipschitz in
C([0, T]; X)m. Indeed, let u, v ∈ C([0, T]; X)m, so∥∥Nu0,i(u)(t)− Nu0,i(v)(t)

∥∥
X

≤
∫ t

0
∥Tt−s,i(Fi(u(s))− Fi(v(s)))∥X ds

≤
∫ t

0
∥Tt−s,i∥ ∥Fi(u(s))− Fi(v(s))∥X ds

≤ MLipu(Fi)
∫ t

0
∥u(s)− v(s)∥Xm ds

= MLipu(Fi)
∫ t

0

m

∑
j=1

∥∥uj(s)− vj(s)
∥∥

X ds

≤ tMLipu(Fi) ∥u − v∥C([0,T];X)m

where M = supt∈[0,T],i∈J1,mK ∥Tt,i∥, we recall that for any
strongly continuous semigroup, we have that ∥Tt,i∥ ≤
Ceωit for some constants C and ωi. So, from the above
computations, taking the supremum in [0, T] and adding
in i ∈ J1, mK, we have that

∥Nu0(u)− Nu0(v)∥C([0,T];X)m

≤ TM

[
m

∑
i=1

Lipu(Fi)

]
∥u − v∥C([0,T];X)m
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thus Nu0 is Lipschitz with constant MT [∑m
i=1 Lipu(Fi)].

Now, it follows by induction that (Nu0)
k is Lips-

chitz in C([0, T]; X)m with Lipschitz constant
{MT [∑m

i=1 Lipu(Fi)]}k/k!, where k is any positive
integer. This constant is less than 1 if we take k large
enough. Then, we conclude that Nu0 has a unique fixed
point and therefore, there exists a unique solution u that
satisfies u = Nu0(u) for every T > 0. Given 0 < T < T′,
the mild solution in (0, T′) must coincide in (0, T) with
the mild solution in this interval, by uniqueness. Thus,
under assumption (2), the mild solution of (1) extends
uniquely to all t ∈ [0,+∞), i.e., it is global in time.
Proof of Corolario 1.1. Let define the sequence (ui)i∈N

given by

ui = Mi(u0) = M(Mi−1(u0))

where M = Nm
u0

with m ∈ N such that the Lipschitz cons-
tant founded in Theorem 1.1 satisfies

α :=

{
MT

[
m

∑
i=1

Lipu(Gi)

]}m

/m! < 1

In what follows all the norms will be in C([0, T]; X)m.
Now, we claim that (Mi) is a Cauchy sequence, indeed,
given ε > 0, we need to find Λ > 0 such that∥∥∥Mn(u0)− Mk(u0)

∥∥∥ < ε, ∀ n, k ≥ Λ

Hence,∥∥∥Mn(u0)− Mk(u0)
∥∥∥

≤ αk
∥∥∥Mn−k(u0)− u0

∥∥∥
≤ αk(

∥∥∥Mn−k(u0)− Mn−k−1(u0)
∥∥∥+ ...

... + ∥M(u0)− u0∥)
≤ αk(αn−k−1 ∥M(u0)− u0∥+ ... + ∥M(u0)− u0∥)

= αk 1 − αn−k

1 − α
∥M(u0)− u0∥

≤ αk

1 − α
∥M(u0)− u0∥ < ε

if n ≥ k ≥ Λ with Λ > 0 large enough. Thus, we ha-
ve that (Mi)i∈N is a Cauchy sequence in the Banach spa-
ce C([0, T]; X)m, therefore, there exists u ∈ C([0, T]; X)m

such that

u = lı́m
i→∞

Mi(u0), as i → +∞ (3)

Now, we prove that u founded above also satisfies

u = lı́m
j→∞

N j
u0(u0), as j → +∞ (4)

To do this, we note that the limit u in (3) does not depend
of the initial condition, i.e., for any w ∈ C([0, T]; X)m we
have Mi(w) → u, indeed,∥∥∥Mi(w)− u

∥∥∥ ≤
∥∥∥Mi(w)− Mi(u0)

∥∥∥+ ∥∥∥Mi(u0)− u
∥∥∥

≤ αi ∥w − u0∥+
∥∥∥Mi(u0)− u

∥∥∥ → 0

since α < 1 and by (3). Now, in order to prove (4), we note
that for all j ∈ N, it is possible to find k ∈ [0, m[ such that
j = k + mi for some i ∈ N, hence∥∥∥N j

u0(u0)− u
∥∥∥ =

∥∥∥Nk+mi
u0

(u0)− u
∥∥∥

=
∥∥∥Nmi

u0
(Nk

u0
(u0))− u

∥∥∥
=

∥∥∥Mi(Nk
u0
(u0))− u

∥∥∥
=

∥∥∥Mi(w)− u
∥∥∥ → 0

with w = Nk
u0
(u0) ∈ C([0, T]; X)m, as j → +∞. To conclu-

de the proof, we claim that u is the unique mild solution
stated in Theorem 1.1, for which, by uniqueness, we only
need to verify that u = Nu0(u), indeed,

∥Nu0(u)− u∥
=

∥∥∥Nu0(u)− Nu0(Ni−1
u0

(u0))
∥∥∥+ ∥∥∥Ni

u0
(u0)− u

∥∥∥
≤ MT

[
m

∑
i=1

Lipu(Gi)

] ∥∥∥u − Ni−1
u0

(u0)
∥∥∥

+
∥∥∥Ni

u0
(u0)− u

∥∥∥ → 0

by (4), as i → +∞.

Proof of Lemma 1.1. Since u satisfies (3), we have for all
i ∈ J1, mK

ui(s) = Ts,iu0,i +
∫ s

0
Ts−τ,i fi(τ, u(τ))dτ

Hence, for all s ∈ [0, t]

Tt−s,iui(s) = Tt,iu0,i +
∫ s

0
Tt−τ,i fi(τ, u(τ))dτ

We now multiply by lels and using integration by parts
on s,∫ t

0 lelsTt−s,iui(s)ds

=
∫ t

0
lelsTt,iu0,ids

+
∫ t

0
lels

∫ s

0
Tt−τ,i fi(τ, u(τ))dτds

= (elt − 1)Tt,iu0,i + elt
∫ t

0
Tt−τ,i fi(τ, u(τ))dτ
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−
∫ t

0
elsTt−s,i fi(s, u(s))ds

= eltui(t)− Tt,iu0,i

−
∫ t

0
elsTt−s,i fi(s, u(s))ds

hence taking ũ(t) = eltu(t), we have

ũ(t) = Tt,iu0,i +
∫ t

0
Tt−s,i[lũ(s) + els fi(s, e−lsũ(s))]ds
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