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11. INTRODUCTION 

 

 The study of nonlinear interaction of light with condensed 

matter is accomplished using different nonlinear 

spectroscopic techniques, including Rayleigh-type optical 

mixing (RTOM) spectroscopy which is useful for measuring 

ultrashort relaxation times in semiconductors and dye 

solutions (Yajima et al., 1978; Souma et al., 1980; Souma et 

al., 1982; Masumoto et al., 1985; Garcia Goulding and 

Marcano O., 1985; Paz et al., 1988). RTOM is a four-wave 

mixing technique that relies on a pump and a probe beam 

focused on the medium of interest resulting in a mixed 

frequency and wave vector signal (Yajima and Souma, 1978; 

Haroche and Hartman, 1972). The generation of the RTOM 

spectrum is accomplished by holding the frequency of one of 

the incident beams fixed for varying tuned (and not tuned) 

resonant frequency of the other incident beam. The resulting 

spectra allow an understanding of the nonlinear process used 

to generate the signal, and provide a method for measuring 

the population (T1) and phase relaxation (T2) times. A 
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disadvantage in the experimental implementation of RTOM 

to obtain the complete spectrum is that the process is time 

intensive, if it is desired to have as comprehensive a spectrum 

as possible.  

 

Previous work has shown the dependence of the RTOM 

signal intensity on the incident pump and probe frequencies 

for different values of the ratio of relaxation times k = T1 / T2 

(Franco et al., 1990). This development makes it possible to 

theoretically generate the full signal intensity spectrum for a 

specified value of the ratio of relaxation times. From an 

experimental perspective it is useful to pose an inverse 

problem as to whether or not it might be possible using a 

sparse set of experimental spectral data to obtain an estimate 

of the ratio of the relaxation times, after which the full 

RTOM signal intensity spectrum is obtained, using the above 

referenced theoretical dependence. 

 
2. THEORY 

 

The theoretical background that leads to the formulation of 

the RTOM signal intensity is explicitly formulated in Franco 

et al. (1990), as a result only the relevant equations will be 
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Reconstrucción de la Intensidad de la Señal de Mezcla Tipo 

Rayleigh de Datos Escasos con Enfoque de Problema Inverso  
 

Resumen: Trabajo previo de uno de los autores ha demostrado la dependencia de la intensidad de la señal de 

mezcla óptica tipo Rayleigh (RTOM) en la frecuencia de bombeo y de prueba para valores diferentes de relación de 

tiempos de relajación k = T1 / T2. En este trabajo se define una metodología de problema inverso para determinar la 

relación de tiempos de relajación k de datos incidentes, que son escasos y/o con ruido, de frecuencia de bombeo y 

de prueba que son usados para reconstruir la intensidad de la señal de RTOM de campo entero. Los resultados 

simulados demuestran un procedimiento robusto que apunta a una potencial aplicación experimental, que se la 

perseguirá en un futuro cercano.  
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presented here. In particular, the normalized RTOM signal 

intensity, 𝐼𝑛𝑜𝑟𝑚, is given by Equation (8) of Franco et al. 

(1990) and reproduced here, as seen Equation (1). 

 

𝐼𝑛𝑜𝑟𝑚 =
𝐼(𝛿1,𝛿2)
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where the ratio of relaxation times is 𝑘 = 𝑇1/𝑇2, for 

frequency spaces ∆1= 𝜔1 − 𝜔0 and ∆2= 𝜔2 − 𝜔0, defined in 

terms of the pump frequency 𝜔1, probe frequency 𝜔2 and 

resonant frequency of the transition under study 𝜔0, yielding 

non-dimensional parameters 𝛿1 = ∆1𝑇2 and 𝛿2 = ∆2𝑇2. 

Figures 1(a)–1(c) shows 3D plots of the normalized intensity 

signal for 𝑘 = 0,1;  1,0 and 10.0, respectively. Figures 2(a)–

2(c) show the corresponding quantitative contour plots.

 

 

 
                (a)       (b)             (c) 

Figure 1(a) – 1(c). 3D plot of the RTOM signal intensity as a function of non-dimensional 

parameters 𝛿1 = ∆1𝑇2 and 𝛿2 = ∆2𝑇2 for the case of 𝑘 = 0,1; 1,0 𝑎𝑛𝑑 10,0 

 

 
                (a)       (b)             (c) 

Figure 2(a) – 2(c). Contour plot of the RTOM signal intensity for 𝑘 = 0,1;  1,0 and 10,0 

 

3. NON LINEAR LEAST SQUARES INVERSE 

PROBLEM METHODOLOGY 

 

Traditionally theory and experimentation are done 

independently because of the rigor that each one requires. 

This dichotomy has led to an apocryphal Law of Research: 

Nobody believes the analytical/numerical results, except the 

person who generated them. Everybody believes the 

experimental results, except the person who obtained them. 

More recently, there is a greater tendency toward 

analytical/numerical simulations that rely on computation to 

generate large amounts of numerical data that need graphical 

representation for ease of analysis. Oftentimes the data 

generated is a full-field representation of the physical 

phenomena under consideration. This is equally true of 

experimental data such as interferometric or spectroscopic 

data that offers considerable amounts of data and even full-

field images. Thus a need exists to develop approaches that 

take advantage of the strengths of analytical/numerical 

simulations and experimental results with the goal of 

combining them in a seamless manner to achieve what each 

of them alone is unable to achieve. One approach to satisfy 

this need is to develop an Inverse Problem Methodology 

(IPM) that takes into account that a dialectical dichotomy 

exists between forward or direct problems and reverse or 

inverse problems. Figure 3 shows how the direct and inverse 

problems may be defined for RTOM spectroscopy. The 

forward problem requires defining as inputs the experimental 

geometry, boundary conditions and the ratio of relaxation 

times k = T1 / T2 of the medium under consideration with 

resulting normalized RTOM signal intensity as output. The 

inverse problem starts out with normalized RTOM signal 

intensity for known experimental geometry and boundary 

conditions with the objective of recovering the ratio of 

relaxation times k = T1 / T2. Figures 1 – 2 show the results 

from solving the direct problem to obtain normalized RTOM 

signal intensity which shows a full-field representation for 

the limits of normalized non-dimensional parameters δ1=∆1 

T2 and δ2 = ∆2 T2. The amount of data generated to make 

these plots can be varied greatly depending on the needs of 

the solution. The inverse problem starts out with full 

knowledge of the normalized RTOM signal intensity and 

asks the question as to whether or not it might be possible to 

make an accurate estimate of the ratio of relaxation times k, 

and more particularly what is the minimum sample size of 

data points required, where is the best area within the region 

delimited by normalized non-dimensional parameters δ1 and 

δ2 from which to sample, and even how noisy data affects the 

results. 
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Figure 3. The Direct/Forward Problem and the Reverse/Inverse Problem 

 
 

Figure 4 shows the virtual world of simulation and 

experimentation sides of the Forward Problem, which share 

similar characteristics. In both instances the problem needs to 

be defined including boundary conditions, geometry and 

medium properties; the analytical/numerical/experimental 

model needs to be developed with specific output parameters 

in mind; and finally, the input parameters are defined for 

which the solution and output parameters that are sought is 

implemented. What follows then is a process of verification 

and ascertaining that the model is working as it was designed 

to work, by examining the results and data generated, which 

are in the form of tables of data that are graphed or further 

numerically scrutinized with similar techniques, whether the 

results are from the simulation or the experimental side. 

Generally the simulation side is much more data robust than 

the experimental side, and typically a plot that combines the 

simulation and experimental results is generated to get a 

sense of the fit between theory and experiment, or the 

experimental results might be fit by a least squares approach 

to develop an empirical equation that is practical for 

applications. A question that might be asked at this point is 

whether or not it might be possible to use the experimental 

results to reproduce the relevant parameters of the model, in 

effect seeking to pose an Inverse Problem.

 
Figure 4. The Forward Problem as Simulation and Experiment 

 

 

The simulation and experimentation sides of the Inverse 

Problem are shown in Figure 5. Central to the Inverse 

Problem implementation is a numerical non-linear least-

squares Recursive Inverse Analysis, detailed below, that 

allows an over-determined set of results/data to be used and 

is capable of estimating several parameters of interest. 

Central to defining this Recursive Inverse Analysis is that an 

analytical/numerical model of the problem exists. Like the 

Forward Problem similar requirements have to be met on the 

simulation and the experimental sides: the Inverse Problem 

needs definition, calculation initiation parameters are set, 

results/data serve as inputs, and convergence criteria are 

specified. Also, it is possible to work on either the simulation 

side or the experimental side as needed, so as to complement 

the research needs. The simulation and experimentation sides 

of the Inverse Problem Methodology, which includes the 

Forward and Inverse Problems together, are shown in Figure 

6. The purpose in representing them in this way is to show 

that it is possible to work only on the left or simulation side 

of this diagram, or only on the right side of the diagram, 

which relies on being able to model the phenomena of 

interest either analytically or numerically. This diagram 
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brings into focus the fact that if a researcher is considering 

doing experimental work in order to resolve an inverse 

problem it might be useful to consider working on the left 

side of the equation to determine whether or not 

experimentation would be fruitful. Once it is shown that an 

inverse problem solution is possible on the simulation side of 

the diagram, including consideration of systematic and 

random errors, the requisite investment of equipment, 

supplies, time and effort can be more efficiently expended 

with a greater degree of certainty. 

 

 
Figure 5. The Inverse Problem as Simulation and Experiment 

 

 

 

 
 

Figure 6. The Inverse Problem Methodology as Simulation and Experiment 
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3.1 Non-Linear Least-Squares Recursive Inverse Analysis 

 

One approach to least-squares estimation of non-linear 

parameters relies on the expansion of the physical model as a 

Taylor series and calculating corrections to the several 

parameters at each iteration, assuming local linearity. The 

problem may be stated as follows [adapted from Marquardt 

(1963)]: 

 

Let the physical model to fit the data be 

 

𝐸(𝑦) = 𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑚; 𝛽1, 𝛽2, ⋯ , 𝛽𝑘) = 𝑓(𝑥⃑, 𝛽)         (2) 

 

where 𝑥1, 𝑥2, ⋯ , 𝑥𝑚 are independent variables and 

𝛽1, 𝛽2, ⋯ , 𝛽𝑘 are the population values of 𝑘 parameters, and 

𝐸(𝑦) is the expected value of dependent variable 𝑦. Denoting 

data points by Equation (3), 

 

(𝑌𝑖 ,  𝑋1𝑖, 𝑋2𝑖, ⋯ , 𝑋𝑛𝑖  ),   i = 1, 2, ⋯ , n.          (3) 

 

The objective is to compute the estimates of the parameters 

that minimize, as seen Equation (4) 

 

𝛷 = ∑ [𝑌𝑖 − 𝑌̂𝑖]
2

= ‖𝑌⃑⃑ − 𝑌̂⃑⃑‖
2

𝑛
𝑖=1           (4) 

 

where 𝑌̂𝑖 is the value of 𝑦 predicted by Equation (2) at the ith 

data point. 

 

One method based on expanding 𝑓 in a Taylor’s series 

expansion is the Gauss-Newton method (Hartley, 1961). 

Starting with a Taylor’s series expansion of  𝑓 which may be 

expressed as follows, 

 

        〈𝑌(𝑋⃑𝑖 , 𝑏⃑⃑ +  𝛿𝑡)〉 = 𝑓(𝑋⃑𝑖 , 𝑏⃑⃑) +  ∑ (
𝜕𝑓𝑖

𝜕𝑏𝑗
)

𝑘

(𝛿𝑡)𝑗
𝑘
𝑗=1         (5) 

 

or,      〈𝑌⃑⃑〉 = 𝑓0 + 𝑃⃑⃑ 𝛿𝑡           (6) 

 

where 𝛽 is replaced by 𝑏⃑⃑, and the converged value of  𝑏⃑⃑ is the 

least-squares estimate of 𝛽. The small vector 𝛿𝑡 is a small 

correction to 𝑏⃑⃑. The brackets ‹› distinguish predictions based 

on the linearized model from those based upon the actual 

nonlinear model. As a result the value of Φ predicted by 

Equation (5) is Equation (7), 

 

     𝛷 = ∑ [𝑌𝑖 − 〈𝑌𝑖〉]2.𝑛
𝑖=1            (7) 

 

Since 𝛿𝑡 appears linearly in Equation (6) it can be found by 

setting 𝜕〈𝛷〉 𝜕𝛿𝑗⁄ = 0, for all 𝑗, and 𝛿𝑡 is found solving 

 

𝐴𝛿𝑡 = 𝑔⃑𝑡                 (8) 

 

Where, Equations from (9) to (11b) 

 

𝐴(𝑘𝑥𝑘) = 𝑃𝑇𝑃               (9) 

 

𝑃(𝑛𝑥𝑘) = (
𝜕𝑓𝑖

𝜕𝑏𝑗
),   i = 1, 2, ⋯ , n;  j = 1, 2, ⋯ , k,      (10) 

 

𝑔⃑(𝑘𝑥1) = (∑ (𝑌𝑖 − 𝑓𝑖)
𝑛
𝑖=1 (

𝜕𝑓𝑖

𝜕𝑏𝑗
)), j = 1, 2, ⋯ , k,        (11a) 

 

            =  𝑃𝑇(𝑌⃑⃑ − 𝑓0)        (11b) 

 

The above least-squares estimation of non-linear parameters 

is presented to formalize the process of how this is 

accomplished. A practical way to accomplish this least-

squares estimation of non-linear parameters procedure more 

efficiently and robustly is to use a MATLAB® script that is 

able to solve these problems with time-tested and 

standardized procedures. 

 

3.2 Estimation of the Ratio of Relaxation Times from 

Normalized RTOM Signal Intensity 

 

The particular inverse problem that is solved is to find an 

estimate the ratio of relaxation times 𝑘 = 𝑇1/𝑇2 from values 

of the normalized RTOM signal intensity defined by the 

normalized non-dimensional parameters 𝛿1 and 𝛿2. From an 

experimental perspective, the usual practice is to fix the 

pump frequency 𝜔1 and to change the probe frequency 𝜔2, or 

vice versa, as the medium is interrogated by measuring the 

intensity of the RTOM spectrum which is then normalized 

with respect to the maximum intensity. One way to lend 

efficiency to this procedure is to make the number of RTOM 

spectrum intensity measurements is as sparse as possible, but 

sufficient to allow for the robust estimation of the ratio of 

relaxation times 𝑘 = 𝑇1/𝑇2. Additionally, it would make 

sense to determine which values of pump frequency 𝜔1 and 

probe frequency 𝜔2 yield the best estimates of 𝑘, and even 

how noisy data affects the results, all this on the simulation 

side, for guidance leading to experimentally obtained results. 

 

3.3 Simulation Results 

 

Table 1 shows the results of estimating 𝑘 by using data sets 

of varying sizes from 5 to 201 data points, as well as 

tabulating the number of iterations needed for obtaining the 

𝑘. The data points are evenly distributed along 𝛿2 at fixed 𝛿1. 

Since all of the estimates for 𝑘 are exact to four decimals, the 

parameter used to determine the near optimum number of 

data points for all values of 𝑘 is the number of iterations, 

which is a minimum for data set 7 (in yellow) which 

corresponds to 41 data points. 

 

A similar result is shown in Table 2 for data points evenly 

distributed along 𝛿1 at fixed 𝛿2, where again data set 7 (in 

yellow) is shown to require the minimum number of 

iterations. 
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Table 1. Parameter estimate of 𝑘 = 𝑇1/𝑇2 for fixed  𝛿1 = 0,50 

  k 0,10 1,00 10,00 

Data Set 

Number of 

Data Points 

Number of 

Iterations 

Parameter 

Estimate 

Number of 

Iterations 

Parameter 

Estimate 

Number of 

Iterations 

Parameter 

Estimate 

1 5 27 0,1000 34 1,0000 30 10,0000 

2 9 33 0,1000 29 1,0000 33 9,9999 

3 15 26 0,1000 31 1,0000 36 10,0000 

4 19 27 0,1000 31 1,0000 40 10,0000 

5 25 31 0,1000 36 1,0000 36 10,0000 

6 31 29 0,1000 33 1,0000 36 10,0000 

7 41 25 0,1000 31 1,0000 32 10,0000 

8 51 24 0,1000 31 1,0000 34 10,0000 

9 101 27 0,1000 27 1,0000 32 10,0000 

10 201 23 0,1000 28 1,0000 33 10,0000 

 

 

Table 2. Parameter estimate of 𝑘 = 𝑇1/𝑇2 for fixed  𝛿2 = 0,79 

  k 0,10 1,00 10,00 

Data Set 

Number of 

Data Points 

Number of 

Iterations 

Parameter 

Estimate 

Number of 

Iterations 

Parameter 

Estimate 

Number of 

Iterations 

Parameter 

Estimate 

1 5 26 0,1000 30 1,0000 38 10,0001 

2 9 28 0,1000 27 1,0000 40 10,0002 

3 15 32 0,1000 24 1,0000 36 10,0000 

4 19 25 0,1000 29 1,0000 40 9,9999 

5 25 32 0,1000 27 1,0000 36 10,0001 

6 31 29 0,1000 26 1,0000 38 10,0000 

7 41 23 0,1000 34 1,0000 35 10,0000 

8 51 29 0,1000 29 1,0000 37 9,9999 

9 101 25 0,1000 30 1,0000 37 10,0000 

 

 

 

Figure 7(a)–(c) shows a qualitative result of adding noise to 

the normalized intensity and represented as contour maps for 

𝑘 = 0,1 and changing values of standard deviation, 𝜎𝑛𝑜𝑖𝑠𝑒 , 

which as a measure of added random noise to the normalized 

intensity as per the Equation (12), 

 

𝐼𝑛𝑜𝑟𝑚 =  𝐼𝑛𝑜𝑟𝑚 + 𝜎𝑛𝑜𝑖𝑠𝑒  (𝑟𝑎𝑛𝑑𝑛)         (12) 

 

where 𝑟𝑎𝑛𝑑𝑛 is a MATLAB® random function that 

generates arrays of random numbers whose elements are 

normally distributed with mean 0, variance 𝜎2 = 1, and 

standard deviation 𝜎 = 1. The purpose of adding noise to the 

maximum normalized intensity is to assess the robustness of 

recovering an estimate of the ratio of relaxation times 𝑘 =
𝑇1/𝑇2, for changing values of 𝜎𝑛𝑜𝑖𝑠𝑒 , the noise standard 

deviation. 

 

Table 3 shows the results of estimating the ratio of relaxation 

times is k for increasing values of 𝜎𝑛𝑜𝑖𝑠𝑒 , the noise standard 

deviation. This calculation is done using 41 data points 

evenly distributed along δ2 at fixed δ1. Recall that the use of 

41 data points allowed a minimum number of iterations for 

convergence to obtain and estimate of k. Note from Table 3 

that as the value of standard deviation increases, indicating an 

increasing level of noise, the number of iterations needed to 

obtain an estimate of k increases and the estimate of k 

diverges, sometimes significantly from the actual value. 

 

An additional calculation done to determine whether or not 

there is a best region from which to acquire data in the range 

of values of 𝛿1 and 𝛿2 between -2 and +2 is shown in Figures 

8–10. Regions of interest are defined by dividing the 

respective axes into twenty sections. This results in 

subdividing the total area under consideration into 400 sub-

regions of interest. Within each sub-region the values of 𝛿1 

and 𝛿2 were selected at random, so as to use them to generate 

100 data points of normalized maximum intensity. 
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          (a)    (b)          (c) 

Figure 7(a) – (c). Qualitative contour plot of the RTOM signal intensity for 𝑘 = 0,1 

with noise given by a Standard Deviation, σ = 0,000;  0,010 and 0,020 

 

 
Table 3. Parameter estimate of 𝑘 = 𝑇1/𝑇2 for noisy data and fixed  𝛿1 = 0.50 

  k 0.10 1.00 10.00 

Data Set 
Standard 

Deviation 

Number of 

Data Points 

Number of 

Iterations 

Parameter 

Estimate 

Number of 

Iterations 

Parameter 

Estimate 

Number of 

Iterations 

Parameter 

Estimate 

1 0,0000 41 25 0,1000 31 1,0000 32 10,0000 

2 0,0009 41 35 0,1000 41 0,9993 38 9,9816 

3 0,0050 41 36 0,1106 37 0,9950 42 9,9326 

4 0,0100 41 36 0,1357 41 1,0001 43 9,8231 

5 0,0200 41 43 0,0605 40 0,9887 41 9,5843 

6 0,0300 41 45 0,0000 40 0,9962 44 8,3216 

7 0,0350 41 46 0,0000 43 0,9419 47 11,1738 

8 0,0500 41 40 0,1885 44 0,9459 45 10,9790 

 

 

Once these values were calculated an estimate of the ratio of 

relaxation times 𝑘 with values of 0,1; 1,0 and 10,0 was 

obtained for each sub-region. To represent these values 

graphically, the absolute value of the difference between the 

actual 𝑘 and the estimate of 𝑘 is used to obtain a 

representative value of an estimate of the error in each sub-

region. A gray level value is assigned to this estimate of the 

error, where a zero difference is white and increasing levels 

of gray represent a greater estimate of the error. Also shown, 

on the left side of each of these figures, is the corresponding 

contour diagram identifying the relationship between the 

contour map of normalized intensity and the sub-regions of 

interest. A general observation is that the best estimates of 𝑘, 

identified in white, roughly correspond to the main areas that 

occupy the normalized intensity contour maps. A finer sub-

division of the area encompassing the contour map might 

yield the best regions from which data sets might be acquired 

when doing experimentation. Also, when comparing the 

contour maps shown of the left side of Figures 8 – 10 note 

that the longer axis of each contour map rotates 

counterclockwise as 𝑘 increases. Additionally the shape 

changes from being wide and elongated to a more compact 

shape, and finally to being narrow and less elongated. 

 

4. SUMMARY AND CONCLUSIONS 

 

The purpose of this paper is to propose an inverse problem 

methodology that encompasses both a simulation side and an 

experimental side, to attempt to achieve the age old goal of 

combining experimentation with analytical/numerical 

approaches. The simulation side is used to not only solve a 

forward problem related to nonlinear op-tics to determine the 

dependence of the Rayleigh-type optical mixing (RTOM) 

normalized signal intensity on the incident pump and probe 

frequencies for different values of the ratio of relaxation 

times k = T1/T2. But to recover the ratio of the relaxation 

times k from consideration of sparse and/or noisy incident 

pump and probe frequency data sets in solving an inverse 

problem from which the full field RTOM signal intensity is 

reconstructed. The insights gained from this simulated 

forward and inverse problem solution, which may be 

effectively viewed as a form of analytical/numerical 

experimentation, influences how an experimental forward 

problem may be set up and con-ducted to maximize its 

effectiveness in terms of efficiency and time. 
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Figure 8. Contour plot of the RTOM signal intensity for 𝑘 = 0,1 and the corresponding error estimation 

 

 

 
Figure 9. Contour plot of the RTOM signal intensity for 𝑘 = 1,0 and the corresponding error estimation 

 
 

 
Figure 10. Contour plot of the RTOM signal intensity for 𝑘 = 10,0 and the corresponding error estimation 

 

In summary, an inverse problem methodology is defined to 

determine the ratio of the relaxation times k from values of 

normalized RTOM signal intensity where data sets of 

different sizes, noisy data sets and data sets from different 

sub-regions have been used to assess the robustness of the 

inverse problem methodology. The results point to a robust 
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procedure which has the potential to influence efficient 

experimental application, which will be pursued in the near 

future.  
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