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1. INTRODUCTION 

 

The concept of balancing a robot is based on the inverted 

pendulum model idea. An inverted pendulum is an open loop 

unstable system with highly non-linear dynamics. The 

inverted pendulum problem is common in the field of control 

engineering. The uniqueness and wide application of 

technology derived from this unstable system has drawn 

interest of researchers and robotics enthusiasts around the 

world [1-3]. Therefore, it represents an ideal experiment for 

the design of classical and contemporary control techniques 

[3]. It has broad ranging applications from robotics to space 

rocket guidance systems [1]. 

 

Mobile robotics is a rapidly expanding field. In the near 

future, mobile robots could be used in a large number of 

applications, particularly in assisting and interacting with 

humans e.g. transporting materials around offices or 

hospitals, domestic activities, etc. The type of robot used in 

this paper is a mobile robot with a two wheeled inverted 

pendulum, known as the Two-Wheeled inverted Pendulum 

Robot NXT Lego Mindstorms. The robot has a body with 

two wheels for moving in a plane and a head similar to a 

human head. Two independent driving wheels are used for 

position control and for fast motion in a plane.  

 

The educational platform Lego Mindstorms NXT 2.0 is a 

new generation in educational robotics that can assemble 

numerous mechanical configurations and also allows the 

possibility of programming in various languages (robot is 

programmed on RobotC.) 

 

In Fig. 1 the Lego Mindstorms NXT platform is shown. It is 

configured as a two-wheeled inverted pendulum:  

 

The main components are: 1) NXT brick which is the brain 

of Lego Mindstorms, 2) compass sensor which measures the 

angle of orientation (ϕ) and also estimates their speed ( ), 3) 

gyro sensor which measures the speed of inclination   and 

estimates their angle ψ and 4) electric actuators for both 

wheels, which contain angular position sensors (encoders) to 

measure the angular position θ of the wheels and estimate 

their speed . [4, 5]. 
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Resumen: El objetivo de este artículo es desarrollar y comparar diferentes modelos de un robot tipo péndulo 

invertido de dos ruedas llamado NXT Lego Mindstorms. Dos modelos son desarrollados: un modelo completo no 

lineal y uno lineal obtenido mediante estimación por mínimos cuadrados. Las respuestas de ambos modelos son 

comparadas con la respuesta del robot real. El modelado de procesos es fundamental en la síntesis  de 

controladores, ya que en su mayoría el diseño de controladores está basado en modelos matemáticos. Por lo tanto, 

en la medida que obtengamos mejores y más exactos modelos más fácilmente será derivar controladores que 

presenten un desempeño satisfactorio. 
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Abstract: The aim of this paper is to develop and compare different models of a two-wheeled inverted pendulum 

robot   Lego Mindstorms. Two models are developed, a complete nonlinear one, and a linear one based on least 

squares estimation. The responses of both models are compared with the response of the real robot. Processes 

modeling is fundamental in controllers’ synthesis, since most of the controllers design are based on mathematical 

models. Therefore, if better and more accurate mathematical models are obtained more easily is the controller’s 

synthesis for satisfactorily performance. 
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Figure 1. The NXT Lego Mindstorms system. 

 

There are some papers dedicated to mobile robots. Most of 

them describe control and educational tasks. For instances, 

Christian Sundin and FilipThorstensson [6]. This project 

consistsin designing and building a two wheeled upright 

robot. The robot was designed for use on display tables at 

exhibitions. It has visible components and features some 

functions, like the display and some sensors, whose task is to 

draw interest from the surroundings. It interacts in a small 

extent to the surroundings by using a distance sensor in 

combination with a temperature sensor which makes it 

possible to distinguish a living being from an object. The 

robot also has a bowl on top for carrying a load.  

 

A mathematical model was made for simulations and to test 

and dimension the controllers for standing upright and for 

movement. Both a PID and a LQG-controller were 

implemented and tested on the robot as well as different 

filters [7]. In this paper is presented an approach to be used in 

teaching for undergraduate courses. Patete, Aguirre, and 

Sanchez [3] showed, the inverted pendulum modelled using 

the Lagrange method, and from it a reduced model is given 

for the no linear system model. They used a PID algorithm to 

control the Lego robot. Canal and Brunet [8], presented an 

educational framework based on the Lego Mindstorms NXT 

robotic platform used to outline both the theoretical and 

practical aspects of the Model Predictive Control theory. 

 

The aim of this paper is the development and   comparison of 

two different models of the robot described above. This 

process is crucial since most of the controller design is based 

on mathematical models. Thus, if better and more accurate 

mathematical models are obtained more easily is the 

controller’s synthesis for satisfactorily performance. Two 

models are obtained, firstly a complete nonlinear model is 

developed, and secondly a linear model based on the least 

squares method is also presented.The performance of both 

mathematical models are compared with the real robot. 

 

This work is divided as follows: an introduction is presented, 

second section shows the nonlinear model and linear model, 

in section 3 a comparison among models and real robot is 

presented, and finally, conclusions are written. 

2. MODELLING OF TWO-WHEELED INVERTED 

PENDULUM ROBOT 

In this section a nonlinear model and a linear model are 

detailed. It is considered for modelling purposes six state 

variables and two inputs. 

 

2.1 Nonlinear Modelling of Two-Wheeled Inverted pendulum 

Robot 

 

In order to obtain the nonlinear mathematical model of this 

system, the model as is given in [4] is going to be taken as a 

reference including the dynamic equations which describe the 

behaviour of the system. 

 

 From Fig. 2, the following angles are identified: 

 

ψ:  Body pitch angle.  

θ:   Angular position of the right and left wheel. 

ϕ:   Body yaw angle. 

 

 
Figure 2. Lateral and top view of the system. 

2.1.1 Dynamic equations of the system 

 

By using the model as is shown in Fig.3, the Lagrange 

method, the kinetics energy translational and rotational, and 

the potential energy the forces as given in [4]: 

 

 
Figure 3. Front, top and side view of the NXT Lego Mindstorms inverted 

pendulum. 
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Y Considering the torque of the DC motor, and the viscous friction, 

the forces in a general way could be expressed as follows: 
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The forces can be expressed by using the voltage of the DC 

motor as it is shown in (8), (9) and (10). [4] 
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2.1.2 Non-linear model of the system 

 

Equating (1), (2), (3) and (8), (9), (10) the following expressions are 

obtained [9]: 
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Finding  in (12) and replacing in (11) the following is 

obtained: 
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Finding   in (11) y replacing in (12) is obtained the 

following: 
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From (13),  is obtained: 
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2.1.3 Non-linear model of the system 

 

Fig. 3 shows the front, top and side view of the inverted 

pendulum robot. The state vector is: 
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The inputs vector is: 
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Where U represents the voltage control signals, u2 for the 

right wheel andu1for the left one. The output equation 

considers that all states are measurable. Then, the model in 

space state is given by [9]: 
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From the previous equations we can notice that (θ y ϕ) do not 

affect to  or . 

 

2.1.4Linear Modelling of Two-Wheeled Inverted pendulum 

Robot 

 

 

The outputs have a linear behavior if they are seen from the 

state space. They have the following form: 
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Each output can be estimated by minimizing the square error 

in their parameters. The estimated outputs in each sample can 

be written as follows: 
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According to [5] in order to obtain the reduced order 

estimation 00P̂   will be 1, and the number of samples [k] has 

to be bigger than the number of outputs in order to obtain an 

acceptable estimation, so the estimated outputs can be 

rewritten as: 
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The error between the real outputs and the estimated ones in 

each sample is: 
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Replacing the estimated output expression in the equation 

(28): 
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In order to minimize the square error of the parameters 0P̂  a 

quadratic performance index needs to be minimized as well. 

The index is [3]: 
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Considering these properties: 
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Where A is a matrix, and the estimated parameters will be: 
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Therefore, the least square method provides a linear model of 

the inverted pendulum, linearized around an equilibrium 

point. gX must be a full rank matrix. Moreover, inside T0P̂   

the matrices A and B, of the linear model, are contained; its 

first column is an independent term that tends to zero. 

 

With 2000 samples and a sampling time of 10 [ms] the model 

for the NXT Lego Mindstorms Two- Wheeled Inverted 

Pendulum linearized by the least square method is: 
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3. MODELS AND ROBOTCOMPARISONS 

 

For comparison purposes the response of the real system is 

comparedagainst the nonlinear model and the linear one. A 

linear quadratic controller is implemented which is detailed 

below. 

 

3.1 Implementation of the discrete linear quadratic regulator 

(LQR) 

 

 

To validate the obtained models an optimal feedback control 

LQR is performed. The linear system is given by: 

 

Bu(k)+Ax(k)=1)+x(k                                                      (36) 

 

Which must be transformed from a state x(0)=x0  to another 

state x(N)=0, by minimizing a performance index: 
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To implement the optimal controller LQR from the linearized 

system and minimizing the performance index as is in Eq. 
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the system variables and the control action in this way, the 

matrices Q and R will be: 
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Where the optimal gain vectors for feedback obtained are: 

 

.005].3,-1.7,-0.5,-1.2,-1[-85.2,-11=Ku1  

005]1.3,1.7,0.1.5,-1.2,-[-85.18,-1=Ku2  

 

3.2 Tests and results 

 

Inverted pendulum models, both linear and nonlinear, cannot 

be validated directly since it is an open loop unstable system. 

It is not possible to analyze the process response using a step 

change due to the robot cannot stay balanced unless a 

controller be used. In order to test both mathematical models 

against the real robot a LQR controller has been implemented 

in the Lego Mindstorms NXT inverted pendulum. 

 

To test the mathematical models, an external disturbance is 

considered, a constant force to keep a deviation of 0.1 rad. in 

( ) angle. Next figures show the real response (robot) and 

the mathematical models responses for  ,, , and also for  

speeds   ,, . 

 

To analyze the models, some disturbances are applied. They 

are detailed below: 

 

An external force is exerted on the front of the robot; in Fig. 

4 the sequence of the dynamic behavior of the robot is 

shown. 

 

 
Figure 4. Dynamic behavior of the robot with an external front force. 

 

Fig. 5 shows all the responses for de ψ angle. In spite that the 

dynamical shapes are similar, the settling time are not equal. 

The linear model response is faster than the others two. 

 

 
Figure 5. ψ angle. Robots and models responses 

 

In Fig. 6 are depicted the speed of the ψ angle for robot and 

mathematical models. 

 

 

Figure 6.  for Robot and models 

 

When an upset occurs, it affects the angle θ that represents 

the angular displacement of the tires in an instant of time. 

The angular displacement of the wheels can be seen in Fig. 7. 
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(b) (c) (a) 

(b) (c) (a) 

 
Figure 7. θ for robot and mathematical models. 

 

The speed of the tires can be seen in Fig.8. 

 

 

Figure 8. for robot and models 

 

The disturbance does not affect the orientation of the system; 

it is reflected in the angle ϕ. The ϕ angle differences for real 

system and mathematical models are negligible as is shown 

in Fig. 9. 

 

Figure 9.  Comparison 

 

Fig. 10 shows that changes in speed for  angle is also 

minimal. 

 

Figure 10.  Comparison 

An external force is exerted on the back of the robot .The 

disturbance is considered, a constant force to keep a deviation 

of -0.12 rad. in ( ) angle; in Fig.11 the sequence of the 

dynamic behavior of the robot is shown. 

 

 
Figure 11. Dynamic behavior of the robot with an external back force. 

 

The inclination angle ( ) under the presence of the external 

force applied on the back of the robot, behaves as it is 

presented in Fig. 12 the plot (a) represents the real system, 

(b) the nonlinear model, and (c) the linear model. 

 
Figure 12. Inclination angle ( ) for (a) the real system, (b) the nonlinear 

model and (c) the linear model under an external back force. 

 
Fig. 13 shows the angular position of the wheels ( ) when the 

external back force is applied. (a) The real system, (b) the 

nonlinear model, and (c) the linear model. 

 

 
Figure 13. Inclination angle ( ) for (a) the real system, (b) the nonlinear 

model and (c) the linear model under an external back force. 

 

 

 

 

 

10 11 12 13 14 15
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Theta angle real system

Time [seg]

[
r
a
d
]

10 11 12 13 14 15
-1.5

-1

-0.5

0

0.5

1

1.5

2
Theta Angle Simulated System

Time [seg]

[
r
a
d
]

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
-1.5

-1

-0.5

0

0.5

1

1.5
Theta Angle Linear Simulated System

Time [seg]

[
r
a
d
]

 

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
-15

-10

-5

0

5

10

15
Theta Speed Linear Simulated System

Time [seg]

[
r
a
d
/
s
]

11.5 12 12.5 13 13.5 14 14.5 15
-15

-10

-5

0

5

10

15
Psi Speed No Linear Simulated System

Time [seg]

[
r
a
d
/
s
]

11.5 12 12.5 13 13.5 14 14.5 15
-15

-10

-5

0

5

10

15
Theta speed real system

Time [seg]

[
r
a
d
/
s
]

 

10 11 12 13 14 15
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Psi Speed No Linear Simulated System

Time [seg]

[
r
a
d
/
s
]

10 11 12 13 14 15
-0.1

-0.05

0

0.05

0.1
Psi Speed No Linear Simulated System

Time [seg]

[
r
a
d
/
s
]

10 11 12 13 14 15 16
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Phi angle real system

Time [seg]

[
r
a
d
]

 

10 11 12 13 14 15 16
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Phi speed real system

Time [seg]

[
r
a
d
/
s
]

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05
Phi Speed Linear Simulated System

Time [seg]

[
r
a
d
/
s
]

10 11 12 13 14 15
-0.05

0

0.05
Phi speed Simulated System

Time [seg]

[
r
a
d
/
s
]

2 3 4
-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Psi angle real system

Time [seg]

[r
a
d
]

2 3 4
-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Psi angle nonlinear model

Time [seg]

[r
a
d
]

2 3 4
-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Psi angle linear model

Time [seg]

[r
a
d
]

2 3 4
-10

-8

-6

-4

-2

0

2

4

6

8

10
Theta angle real system

Time [seg]

[r
a
d
]

2 3 4
-10

-8

-6

-4

-2

0

2

4

6

8

10
Theta angle nonlinear model

Time [seg]

[r
a
d
]

2 3 4
-10

-8

-6

-4

-2

0

2

4

6

8

10
Theta angle linear model

Time [seg]

[r
a
d
]



Two-Wheeled Inverted Pendulum Robot NXT Lego Mindstorms: Mathematical Modelling and Real Robot Comparisons 

_________________________________________________________________________________________________________________________ 

 

 
Revista Politécnica - Septiembre 2015, Vol. 36, No. 1 

3. CONCLUSIONS 

This paper has shown the development of two models for the 

NXT Lego Mindstorms. A nonlinear one which takes into 

account the motor and robot dynamics, and a linear one based 

on the least square method. 

 

The responses for both linear and non linearmodels, cannot 

be compared directly against the robot response, in order to 

do that a LQR should be used to keep balanced the robot, 

since it is an open loop unstable system,  

 

The results indicate that the ψ and θ responses for the real 

system are similar in shape than the presented by the models, 

but some model parameters adjustments should be done in 

order to get closer settling times for the models with respect 

to the real robot. 

 

The ϕ angle differences for real system and mathematical 

models are negligible. 

 

Both models can be used for controller’s synthesis, but if the 

linear one is used, it is recommendable to propose a robust 

controller scheme. 

 

NXT Lego Mindstorms is a good tool for teaching and 

learning activities in control area. 
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