
In this paper, we study the global existence and uniqueness of
sectorial solutions to the system{

∂tui + Aiui = fi(u), ∀ t ∈ (0, ∞)
ui(0, x) = u0i(x),

where Ai are sectorial operators in the Banach space (X, ‖ · ‖),
u0i ∈ X and fi : [0, ∞)×Xm → X a given valued function for
all i ∈ J1, mK := {1, ..., m}, where Xm is the Banach product
space doted with the norm ‖u‖m = ∑m

i=1 ‖ui‖.

In the case m = 1, since work (Byszewski and Lakshmikant-
ham, 1990), (Byszewski, 1991), (Byszewski, 1993), there has
been increasing interest in studying abstract problems in Ba-
nach Spaces (cf., e.g., (Aizicovici and Mckibben, 2000) and re-
ferences therein). For material intimately related to the present
paper, we refer to (Henry, 1981), where is studied the existence
of sectorial solutions for the single equations. Also in (Jack-
son, 1993), (Liang et al, 2002), nonlocal autonomous parabolic

0≤t≤T is a family of m-accretive opera-
tors in X generating a compact evolution family, and the exis-
tence of integral solutions to the associated nonlocal problem is
shown. In the case m > 1, we refer to (Yangari, 2015) in which
is studied the existence and uniqueness of mild solutions of a
reaction diffusion system with infinitesimal generators.

In order to improve the notation, we consider the system{
∂tu + Au = f (t, u), ∀ t ∈ (0, ∞)

u(0) = u0,

where u = (ui)
m
i=1, f = ( fi)

m
i=1 and A = diag(A1, ..., Am).

Moreover, we consider the norm ‖u‖α = ∑m
i=1 ‖ui‖α,i on the

space Xα = ∏m
i Xα

i , where the space Xα
i is defined in the next

section.

α and fi
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Abstract: The aim of this paper is to study the existence and uniqueness of global solutions in time to systems
ofequations, whenthe diffusion terms are given by sectorial generators.

Resumen: El objetivo de este artículo es estudiar la existencia y unicidad de soluciones globales en tiempo
parasistemas deecuaciones, cuando los términos de difusión están dados por operadores sectoriales.

  (1)

Throughout this paper, we assume Ω some open set in R ×
X                  : Ω 7→ X is locally Hölder continuous in t and
locally Lipschitz continuous in u on Ω for all i ∈ J1, mK. More

problems are investigated, with f being Lipschitz continuous.
The existence of mild and classical solutions for reaction dif-
fusion equations involving a particular class of sectorial opera-
tors (fractional Laplacians) are studied in (Cabré and Roque-
joffre, 2013). See also the result in (Aizicovici and Mckibben,
2000), in which {A(t)}



precisely, if (t1, x1) ∈ Ω, there exists a neighborhood V ⊂ Ω
such that for (t, x) ∈ V, (s, y) ∈ V

‖ fi(t, x)− fi(s, y)‖ ≤ Li(|t− s|θi + ‖x− y‖α

for some constants Li > 0 and without loss of generality we
assume θ := θi > 0 for all i ∈ J1, mK. Moreover, a solution of

0, t1

0, t1) −→ Xm such that u(t0) = u0 and on (t0, t1) we ha-
ve (t, u(t)) ∈ Ω, u(t) ∈ D(A), ∂u

∂t (t) exists, t 7→ f (t, u(t))
is locally Hï¿œlder continuous and∫ t0+ρ

t0

‖ f (t, u(t))‖m dt < ∞

Taking i ∈ J1, mK fixed throughout this section, we call a li-
near operator Ai in a Banach space X, a sectorial operator
if it is a closed densely defined operator such that, for some
φ ∈ (0, π/2), M ≥ 1 and a real ε, the sector

Sε,φ = {λ | φ ≤ |arg(λ− ε)| ≤ π, λ 6= ε}

is in the resolvent set of Ai and∥∥∥(λI − Ai)
−1
∥∥∥ ≤ M/|λ− ε| for all λ ∈ Sε,φ.

Let us note that every bounded linear operator on a Banach
space is sectorial. Also, if we define

e−Ait =
1

2iπ

∫
Γ
(λI + Ai)

−1eλtdλ

where Γ is a contour in the resolvent of −Ai with arg(λ) →
±θ as |λ| → ∞ for some θ ∈ (π/2, π), we have that
−Ai is the infinitesimal generator of the analytic semigroup
(e−Ai(t))t≥0, moreover, if Reσ(Ai) > bi, then for t > 0∥∥∥e−Ait

∥∥∥ ≤ ce−bit,
∥∥∥Aie−Ait

∥∥∥ ≤ c
t

e−bit

It is important to note that, if B is a bounded linear operator,
then e−Bt as defined above extends to a group of linear opera-
tors and verifies

e−Bte−Bs = e−B(t+s), f or−∞ < t, s < ∞.

In order to define the fractional power of a sectorial operator
Ai, we assume Reσ(Ai) > 0, so, for any α ∈ (0, 1)

A−α
i =

1
Γ(α)

∫ ∞

0
tα−1e−Aitdt.

Taking A−α
i defined as above, we have that this operator is a

bounded linear operator on X which is one-one and satisfies
A−α

i A−β
i = A−(α+β)

i . Furthermore, Aα
i represents the inverse

operator of A−α
i with D(Aα

i ) = R(A−α
i ) and A0

i is the iden-
tity on X. An important result concerning positive powers of
sectorial operators is∥∥∥Aα

i e−Ait
∥∥∥ ≤ cαt−αe−bit

with Reσ(Ai) > bi > 0 and if u ∈ D(Aα
i )∥∥∥(e−Ait − I)u

∥∥∥ ≤ 1
α

c1−αtα ‖Aα
i

also, Aα
i Aβ

i = Aβ
i Aα

i = Aα+β
i on D(Aγ

i ) with γ =
max(α, β, α + β).

Now, we consider the fractional powers of Bi := Ai + ai I with
ai ∈ R chosen so Reσ(Bi) > 0, where σ(Bi) is the spectrum
of Bi. We define the Banach space Xα

i = D(Bα
i ) with the norm

‖u‖α,i =
∥∥Bα

i u
∥∥, where D(Bα

i ) is the domain of the operator
Bα

i . Finally, taking α ≥ β ≥ 0, then Xα
i is a dense subspace of

Xβ
i with continuous inclusion, also, X0

i = X.

For more information about sectorial operators we refer the
reader to (Henry, 1981).

In order to state our first result, since −Ai
−Ai(t))t≥0

given by

u(t) = P(t− t0)u0 +
∫ t

t0

with
P(t) = diag(e−A1(t), ..., e−Am(t)).

In what follows, the constant C > 0 represents different cons-
tants.

0, t1

0, t1) into Xα,∫ t0+ρ

t0

‖ f (s, u(s))‖m ds < ∞

0 < t < t1

0, t1
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3. MAIN RESULTS

the initial value system (1) on (t ) is a continuous function
u : [t

for some ρ > 0 and the differential equation (1) is verified.

is the infinitesimal
generator of the analytic semigroup (e                                                                        for each i ∈
J1, mK, we define the weak formulation for the system (1)

).
,

then u is a solution of the system (1) on (t

) (2)

. (3)

f or t > 0   (4)

u‖   (5)

P(t− s) f (s, u(s))ds    (6)

Lemma 3.1 If u is the solution of the system (1) on (t ),
then equation (6) is satisfied. Inversely, if u is a continuous
function of (t

for some ρ > 0 and equation (6) is satisfied for t

2. SECTORIAL OPERATORS



0, t1), taking i ∈ J1, mK fixed, we define the auxiliary fun-
ction

gi(t, v) = fi(t, u1, ..., ui−1, v, ui+1, ..., un).

Let see that gi(t, ui(t)) is locally Hï¿œlder continuous in t and∫ t0+ρ
t0
‖gi(t, ui(t))‖ dt < +∞. Indeed, since gi : (t0, t1) ×

Xα
i −→ X and

‖gi(t, ui(t))− gi(s, ui(t))‖

= ‖ fi(t, u(t))− fi(s, u(s))‖
≤ ‖ f (t, u(t))− f (s, u(s))‖m

≤ L|t− s|ν

since t −→ f (t, u(t)) is Hï¿œlder continuous with exponent
ν ∈ (0, 1). Furthermore,∫ t0+ρ

t0

‖gi(t, ui(t)‖X dt =
∫ t0+ρ

t0

‖ fi(t, u(t))‖X dt

≤
∫ t0+ρ

t0

‖ f (t, u(t))‖m dt

< +∞

that {
∂tui + Aiui = gi(t, ui),

ui(0) = u0i.

Therefore by the theorem 3.2.2 in (Henry, 1981), we have that
ui

ui(t) = e−Ai(t−t0)u0i +
∫ t

t0

e−Ai(t−s)gi(s, ui(s))ds.

Repeating the same procedure for all i ∈ J1, mK, we have

u(t) = P(t− t0)u0 +
∫ t

t0

P(t− s) f (s, u(s))ds

and u ∈ C
(
(t0, t1); Xα

)
. Besides, for each i ∈ J1, mK, we have

that ui : (t0, t1) −→ Xα
i is continuous and verifies

ui(t) = e−Ai(t−t0)u0i +
∫ t

t0

e−Ai(t−s)gi(s, ui(s))ds.

First, we will prove that ui is locally Hï¿œlder continuous from
(t0, t1) to Xα

i . Thus, if t, t + h ∈ [t∗0 , t∗1 ] ⊂ (t0, t1) with h > 0
and δi ∈ (0, 1− α), we claim that

‖ui(t + h)− ui(t)‖α,i ≤ Cihδ

for some positive constant Ci. Indeed,

ui(t + h)− ui(t) = (e−Aih − I)e−Ai(t−t0)u0i

+
∫ t

t0

(e−Aih − I)e−Ai(t−s)gi(s, ui(s))ds

+
∫ t+h

t
e−Ai(t+h−s)gi(s, ui

Now, for any z ∈ X, by Theorem 1.4.3 in (Henry, 1981),∥∥∥(e−Aih − I)e−Ai(t−s)z
∥∥∥

α,i
≤ C(t− s)−(α+δi)hδi ebi(t−s) ‖z‖ .

Moreover, due to each fi is locally Hï¿œlder in t and locally
Lipschitz in u, we have that

‖ fi(t, u(t))− fi(t0, u(t0))‖ ≤ Li(|t− t0|θ + ‖u(t)− u(t0)‖α)

or equivalently

‖gi(t, ui(t))− gi(t0, ui(t0))‖ ≤ Li(|t− t0|θ + ‖u(t)‖α

+ ‖u(t0)‖α

0, t1) −→ Xα is conti-
nuous, then, we have

Cα = ‖u(t0)‖α + max
t∗0≤t≤t∗1

‖u‖α < +∞.

i(t, ui(t))‖ ≤ L(|t− t0|θ + 2Cα) + ‖gi(t0, u0i)‖
≤ L(|t− t0|θ + c).

∥∥(e−Aih − I)e−Ai(t−t0)u0i

∥∥∥
α,i

≤ C(t∗0 − t0)
−(α+δi)hδi ebi(t1−t0) ‖u0i‖

≤ Chδi ,

since t ∈ [t∗0 , t∗1 ] ⊂ (t0, t1

∥∥∥∥∫ t

t0

(e−Aih − I)e−Ai(t−s)gi(s, ui(s))ds
∥∥∥∥

α,i

≤
∫ t

t0

C(t− s)−(α+δi)hδi ebi(t−s) ‖gi(s, ui(s))‖ ds

≤ Chδi

∫ t

t0

(t− s)−(α+δi)ebi(t−s)(L|t− t0|θ + c)ds

≤ Chδi

∫ t

t0

(t− s)−(α+δi)ds
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Proof. Let assume that u is the solution of the system (1) on
(t

for some ρ > 0. Now, since u verifies the system (1), we have

namely u satisfy the equation (6).

Reciprocally, we suppose now that u satisfy the equation (6)

(7)

is the unique solution of the system (7), which can be writ-
ten as

i (8)

(s))ds.  (9)

We begin bounding the first term of the equation (9),thus

). Now, let us bound the second term
of the equation (9)

). (10)

But for hypothesis, we know that u : (t

Hence, by the inequality (10)

‖g



≤ Chδi .

i) > γi > 0 and Re(σ(−ai I)) ≥ −(ai + γi

∥∥∥∫ t+h
t e−Ai(t+h−s)gi(s, ui(s))ds

∥∥∥
α,i

=
∫ t+h

t

∥∥∥Bα
i e−Bi(t+h−s)

∥∥∥∥∥∥eai I(t+h−s)gi(s, ui(s))
∥∥∥ ds

≤
∫ t+h

t
Cα(t + h− s)−αeai(t+h−s) ‖gi(s, ui(s))‖ ds

≤
∫ t+h

t
Cα(t + h− s)−αeai(t+h−s)(L|s− t0|θ + c)ds

≤ c
∫ t+h

t
(t + h− s)−αeai(t+h−s)ds

≤ c
∫ t+h

t
(t + h− s)−αe−γt0 e−γt1 e−γhds

≤ c
∫ t+h

t
(t + h− s)−αds

≤ ch1−α

≤ Chδi

i(t, ui(t)) is locally
Hï¿œlder continuous on (t0, t1). Indeed,

‖gi(t, ui(t))− gi(s, ui(s))‖
= ‖ fi(t, ui(t))− fi(s, ui(s))‖
≤ Li(|t− s|θ + ‖u(t)− u(s)‖α)

≤ Li(|t− s|θ +
m

∑
i=1
‖ui(t)− ui(s)‖α,i)

≤ Li(|t− s|θ +
m

∑
i=1

Ci|t− s|δi )

≤ C(|t− s|θ +
m

∑
i=1
|t− s|δi ).

Also,∫ t0+ρ

t0

‖gi(t, ui(t))‖ ≤
∫ t0+ρ

t0

‖ f (t, u(ti))‖m dt < +∞.

Then, by Theorem 3.2.2 in (Henry, 1981), ui solves the equa-
tion {

∂tui + Aiui = gi(t, ui(t)) = fi(t, u(t))
ui(0) = u0i

Theorem 3.1 If fi
0, u0) ∈ Ω there exists T = T(t0, u0

0, t0 + T) with initial condition u(t0) = u0.

V = {(t, x)|t0 ≤ t ≤ t0 + τ, ‖x− u0‖α ≤ δ}

is contained in Ω and

‖ fi(t, x)− fi(t, y)‖ ≤ Li ‖x− y‖α

for any (t, x), (t, y) ∈ V. Moreover, we claim that for all i ∈
J1, mK, there exists a constant Mi > 0 such that∥∥∥Bα

i e−Ait
∥∥∥ ≤ Mit−αeait

for all t > 0. Indeed, taking Re σ(Bi) > γi > 0 and
Re(σ(−ai I)) ≥ −(ai + γi

∥∥Bα
i e−Ait

∥∥∥ =
∥∥∥Bα

i e−Aite−ai Iteai It
∥∥∥

=
∥∥∥Bα

i e−Biteai It
∥∥∥

≤
∥∥∥Bα

i e−Bit
∥∥∥ ∥∥∥eai It

∥∥∥
≤ Cαt−αe−γit

∥∥∥e−(−ai I)t
∥∥∥

≤ Cαt−αe−γitCe(ai+γi)t

≤ Mit−αeait.

Furthermore, we set

κ = max
[t0,t0+τ]

‖ fi(t, u0)‖ , L = max
i∈J1,mK

Li

and
a = max

i∈J1,mK
ai, M = max

i∈J1,mK
Mi.

Hence, we can choose T ∈ (0, τ) such that∥∥∥(e−Aih − I)u0i

∥∥∥
α,i
≤ δ

2m
, f or 0 ≤ h ≤ T

for all i ∈ J1, mK and

mM(κ + Lδ)
∫ T

0
u−αeaudu ≤ δ

2
.
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for all i ∈ J1, mK.

Now, we are in position to state our main result in which we es-
tablish the existence and uniqueness of solutions to the system
(1).

) >
0 such that the system (1)   has an unique solution u on
(t

verifies the hypothesis (2) for each   i ∈
J1, mK, then for any (t

), using
inequalities (3) and (4), we have

), using inequalities (3) and (4)

Proof. By the previous lemma is enough to find a solution u of
the equation (6). We choose δ > 0, τ > 0 such that the set

for some large enough positive constant C. Hence, inequa-
lity (8)   is satisfied. Moreover, t 7→ g

Bounding now the third term of the equation (9), taking
Re σ(B

(11)

(12)



If S denote the set of continuous functions y : [t0, t0 + T] →
Xα such that ‖y(t)− u0‖α ≤ δ on t0 ≤ t ≤ t0 + T, provided
by the norm

‖y‖T =
m

∑
i=1

sup{‖yi(t)‖α,i , t0 ≤ t ≤ t0 + T}

then S is a complete metric space since it is the product of com-
plete metric spaces with the product norm. So, for y ∈ S, we
define H(y) : [t0, t0 + T]→ Xm given by

H(y)(t) = P(t− t0)u0 +
∫ t

t0

P(t− s) f (s, y(s))ds.

We claim that H : S → S is a contraction. Indeed, if Y ∈ S
and t0 6 t 6 t0 + T, we have that

‖H(y)(t)− u0‖α

≤ ‖(P(t− t0)− I)u0‖α

+
∫ t

t0

‖P(t− s) f (s, y(s)‖α ds

=
m

∑
i=1

∥∥∥(e−Ai(t−t0) − I)u0i

∥∥∥
α,i

+
m

∑
i=1

∫ t

t0

∥∥∥e−Ai(t−s) fi(s, y(s))
∥∥∥

α,i
ds

≤ α

2
+

m

∑
i=1

∫ t

t0

∥∥∥(Ai)1
αe−Ai(t−s)

∥∥∥ ‖ fi(s, y(s)‖ ds

≤ δ

2
+ mM

∫ t

t0

(t− s)−αea(t−s)(L ‖y(s)− u0‖α + κ)ds

≤ δ

2
+ mM(κ + Lδ)

∫ τ

0
u−αeaudu 6 δ.

We prove now that H(y) : [t0, t0 + T] → Xα is continuous.
Indeed, without loss of generality, we suppose that z < t, thus

‖H(y)(t)− H(y)(z)‖α

=
m

∑
i=1
‖Hi(y)(t)− Hi(y)(z)‖α,i

≤
m

∑
i=1

[∥∥∥(e−Ai(t−t0) − e−Ai(z−t0))u0i

∥∥∥
α,i

+

∥∥∥∥∫ z

t0

(e−Ai(t−s) − e−Ai(z−s)) fi(s, y(s))ds
∥∥∥∥

α,i

+

∥∥∥∥∫ t

z
e−Ai(t−s) fi(s, y(s))ds

∥∥∥∥
α,i

]
=

m

∑
i=1

(I1 + I2 + I3).

Let ε > 0, we need to find δ > 0 such that |t− z| < δ implies
‖H(y)(t)− H(y)(z)‖α < ε. Thus, we bound each term of the
last inequality

I1 =
∥∥∥(e−Ai(t−t0) − e−Ai(z−t0))u0i

∥∥∥
α,i

=
∥∥∥Bα

i e−Ai(z−t0)(e−Ai(t−z)u0i − u0i)
∥∥∥

≤ ‖Bα
i ‖
∥∥∥e−Ai(z−t0)

∥∥∥ ∥∥∥e−Ai(t−z)u0i − u0i

∥∥∥
≤ ‖Bα

i ‖ cie−bi(z−t0)
∥∥∥e−Ai(t−z)u0i − u0i

∥∥∥
≤ Ci

∥∥∥e−Ai(t−z)u0i − u0i

∥∥∥ <
ε

3m

the last inequality is satisfied if |t− z| < δ1 for some δ1 > 0.
Now, bounding I2

I2 =
∥∥∥∫ z

t0
(e−Ai(t−s) − e−Ai(z−s)) fi(s, y(s))ds

∥∥∥
α,i

≤
∫ z

t0

∥∥∥Bα
i (e
−Ai(t−s) − e−Ai(z−s)) fi(s, y(s))

∥∥∥ ds

≤ ‖Bα
i ‖
∫ z

t0

∥∥∥(e−Ai(t−z) − I)e−Ai(z−s) fi(s, y(s))
∥∥∥ ds

≤ ‖Bα
i ‖C

∫ z

t0

∥∥∥Aα
i e−Ai(z−s) fi(s, y(s))

∥∥∥ ds(t− z)

≤ C(t− z)
∫ z

t0

Cα(z− s)−αe−bi(z−s)ds

≤ ε

3m

the last inequality is satisfied if |t− z| < δ2 for some δ2 > 0.
Now, proceeding with I3,

I3 =
∥∥∥∫ t

z e−Ai(t−s) fi(s, y(s))ds
∥∥∥

α,i

≤ ‖Bα
i ‖
∫ t

z

∥∥∥e−Ai(t−s)
∥∥∥ ‖ fi(s, y(s))‖ ds

≤ C
∫ t

z
e−bi(t−s)ds

≤ ε

3m

with |t − z| < δ3 for some δ3 > 0. Therefore, taking δ =
mı́n{δ1, δ2, δ3} we conclude that H(y) ∈ C

(
[t0, t0 + T]; Xα

)
and then H(y) ∈ S.

We now prove that H is a contraction. Let y, z ∈ S and t0 ≤
t ≤ t0 + τ

‖Hi(y)(t)− Hi(z)(t)‖α,i

≤
∫ t

t0

∥∥∥Bα
i e−Ai(t−s)

∥∥∥ ‖ fi(s, y(s))− fi(s, z(s))‖ ds

≤
∫ t

t0

Mi(t− s)−αeai(t−s)Li ‖y(s)− z(s)‖α

= ML
∫ t

t0

(t− s)−αeai(t−s)ds ‖y− z‖T
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≤ ML
∫ T

0
u−αeauds ‖y− z‖T

therefore, with I = [t0, t0 + τ]

sup
t∈I
‖Hi(y)(t)− Hi(z)(t)‖α,i ≤ ML

∫ T

0
u−αeauds ‖y− z‖T

for all i ∈ J1, mK. Hence

‖H(y)(t)− H(z)(t)‖T ≤ mML
∫ T

0
u−αeauds ‖y− z‖T

≤ 1
2
‖y− z‖T .

For the fixed point theorem, H has an unique solution u ∈ S,
where u is a continuous function u : [t0, t0 + T] → (xα

i )
m

i satisfies

‖ fi(t, u)− fi(t0, u0)‖ ≤ Li(|t− t0|θ + ‖u− u0‖α)

thus,

‖ fi(t, u)‖ ≤ Li(|t− t0|θ + δ) + ‖ fi(t0, u0)‖
≤ L(Tθ + δ) + B ≤ C

and then, for any fixed ρ > 0∫ t0+ρ

t0

‖ f (s, u(s))‖m ds =
m

∑
i=1

∫ t0+ρ

t0

‖ fi(s, u(s))‖ ds

≤ mC2ρ < +∞.

0, t0

As a consequence of the previous theorem, we present a result
about the behavior of the solution.

Theorem 3.2 If fi

of f (V) is bounded in Xm

0 , t1) and t1

0 , t2) if t2 > t1, then either t1 = +∞ or
else there exists a sequence tn → t1− as n → +∞ such that
(tn, u(tn)) → ∂Ω. If Ω is unbounded, the point at infinity is
included in ∂Ω.

Proof. Proceeding by contradiction, we suppose that t1 < +∞,
but (t, u(t) is not in a neighborhood N of ∂Ω for t ≤ t < t1,
we can take N of the form N = Ω\B, where B is a closed and
bounded set of Ω and (t, u(t)) ∈ B for all t ≤ t < t1. We will
prove that there exists x1 ∈ Xα such that (t1, x1) ∈ B with
u(t)→ x1 in Xα when t→ t−1 . Even more u(t1) = x1, which
means that the solution could be extended until t1.
Indeed, let C = sup{‖ f (t, u)‖m , (t, u) ∈ B}, so C < +∞

because B is bounded and closed and by hypothesis f (B) is
bounded in Xm.

Firstly, we can see that if α ≤ β < 1 and t ≤ t < t1, then

‖u(t)‖β =
m

∑
i=1
‖ui(t)‖xβ

i

≤
m

∑
i=1

[ ∥∥∥e−Ai(t−t0)u0i

∥∥∥
β,i

+
∫ t

t0

∥∥∥e−Ai(t−s) fi(s, u(s))
∥∥∥

β,i
ds
]

=
m

∑
i=1

[ ∥∥∥Bα
i Bβ−α

i e−Ai(t−t0)u0i

∥∥∥
+
∫ t

t0

∥∥∥Bβ
i e−Ai(t−s)

∥∥∥ ‖ fi(s, u(s))‖ ds
]

≤
m

∑
i=1

c ‖Bα
i ‖
∥∥∥Bβ−α

i e−Ai(t−t0)
∥∥∥ ‖u0i‖α,i

+
∫ t

t0

∥∥∥Bβ
i e−Ai(t−s)

∥∥∥ ‖ fi(s, u(s))‖ ds

≤ c
m

∑
i=1

[
Mi(t− t0)

−(β−α)eai(t−t0) ‖u0i‖α,i∫ t

t0

Mi(t− s)−βeai(t−s) ‖ fi(s, u(s))‖ ds
]

≤ c
[
(t− t0)

−(β−α) +
∫ t

t0

(t− s)−βds
]

≤ C.

Thus, ‖u(t)‖β remains bounded when t → t−1 . Now, we
suppose that t ≤ τ < t < t1, so

u(t)−u(τ) = (P(t− τ)− I)u(τ)+
∫ t

τ
P(t− s) f (s, u(s))ds,

then

‖u(t)− u(τ)‖α,i

≤
m

∑
i=1

[
c
∥∥∥(e−Ai(t−τ) − I)ui(τ)

∥∥∥
β,i

+
∫ t

τ

∥∥∥e−Ai(t−s) fi(s, u(s))
∥∥∥

α,i
ds
]

≤
m

∑
i=1

[
c ‖Bα

i ‖
∥∥∥Bβ−α

i (e−Ai(t−τ) − I)ui(τ)
∥∥∥

+
∫ t

τ

∥∥∥Bα
i e−Ai(t−s) fi(s, u(s))

∥∥∥ ds
]

.

Bounding the first term, let ε1 > 0 an arbitrary number. Sin-
ce D(Aβ−α

i ) is dense in X, we take v ∈ D(Aβ−α
i ) such that

‖ui(τ)− v‖ < η, thus
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+ T).
Therefore, for the Lemma 3.1, u is solution of the system (1)
on (t

. Then u is a solution of the system
(1) on (t is maximal, i.e., there is no solution of
the system (1) on (t

                              verifies the hypothesis (2) for each  i ∈
J1, mK and for all closed and bounded subset V ⊂ Ω the image

which verifies the equation (6). Also, f



∥∥∥Bβ−α
i (e−Ai(t−τ) − I)ui(τ)

∥∥∥
≤

∥∥∥Bβ−α
i

∥∥∥ ∥∥∥(e−Ai(t−τ) − I)ui(τ)
∥∥∥

≤ c
∥∥∥(e−Ai(t−τ) − I)(ui(τ)− v) + (e−Ai(t−τ) − I)v

∥∥∥
≤ c

[ ∥∥∥e−Ai(t−τ)(ui(τ)− v)
∥∥∥+ ‖ui(τ)− v‖

+
∥∥∥(e−Ai(t−τ) − I)v

∥∥∥]
≤ c

[
e−bi(t−τ) ‖ui(τ)− v‖+ ‖ui(τ)− v‖

+
∥∥∥(e−Ai(t−τ) − I)v

∥∥∥]
≤ c

[
e−bit1 η + η + (t− τ)β−α

∥∥∥Aβ−α
i v

∥∥∥]
≤ ε1 + C(t− τ)β−α.

When the last bound is given when η is small enough such that
c(e−ai(t−τ)η + η) < ε1. Now, bounding the second term

∫ t

τ

∥∥∥Bα
i e−Ai(t−s) fi(s, u(s))

∥∥∥ ds

≤ c
∫ t

τ

∥∥∥Bα
i e−Ai(t−s)

∥∥∥ ‖ fi(s, u(s))‖ ds

≤ cMi

∫ t

τ
(t− s)−αeai(t−s)ds

≤ C(t− s)1−α.

Thus, we have

‖u(t)− u(τ)‖α ≤ C
[

ε1 + (t− τ)β−α + (t− τ)1−α

]
.

Now, we consider tn → t−1 and let define un = u(tn), thus,
taking ε > 0, we have

‖un − um‖α ≤ C
[

ε1 + (tn − tm)
β−α + (tn − tm)

1−α

]
< ε.

if n, m are large enough. Therefore, (un) is a Cauchy sequen-
ce in the complete space Xα, thus, there exists x1 ∈ Xα

such that un → x1, it means (tn, u(tn)) → (t1, x1) and
since (tn, u(tn)) ∈ B with B closed, we can conclude that
(t1, x1) ∈ B.

Also, since u : (t0, t1) → Xm is continuous and tn → t−1 , we
have that (tn, u(tn))→ (t1, u(t1)) ∈ B, thus, we can conclude
that u(t1) = x1.

To finish the proof, using the Theorem 3.1 and considering
(t1, x1) ∈ B ⊂ Ω, we can find an unique solution v on

(t1, t1 + T(t1)) for some T(t1

1) = x1. Hence, taking

z(t) =
{

u(t) i f t ∈ [t0, t1]
v(t) i f t ∈ [t1, t1 + T(t1))

we note that z is continuous in [t0, t1 +T(t1

0) = x0 on
(t0, t1 + T(t1)) which contradict the maximality of t1

Finally, we state that under some extra conditions the unique
solution is global in time.

Theorem 3.3 Let us suppose that Ω = (τ,+∞) × Xα and
fi
more, there exists k( · ) a continuous function on (τ,+∞) that
verifies

‖ f (t, u)‖m ≤ k(t)(1 + ‖u‖α)

for all (t, u) ∈ Ω. If t0 > τ, u0 ∈ Xα

0 ) = u0 exists for all t > t0 .

Proof. Firstly, we can note that hypothesis of the Theorem 3.2
are satisfied. Proceeding by contradiction, we take t0

0, t1) where t1 is maximal, so, for the last result
exists a sequence tn → t−1 such that ‖u(tn)‖α → +∞. Howe-

ver, since β < α implies Xα
i < Xβ

i for all i ∈ J1, mK, taking
t ∈ (t, t1), by a similar procedure to the previous theorem and
since K( · ) is continuous on (τ, ∞), i.e., bounded on [t0, t1],
we have

‖u(t)‖α ≤ C
[
(t− t0)

−(α−β)

+
∫ t

t0

(t− s)−α ‖ f (s, u(s))‖m ds
]

≤ c
[
(t− t0)

−(α−β)

+
∫ t

t0

(t− s)−αk(s)(1 + ‖u(s)‖α ds
]

≤ c
[
(t− t0)

−(α−β)

+
∫ t

t0

(t− s)−α(1 + ‖u(s)‖α ds
]

≤ c +
∫ t

t0

c(t− s)−α ‖u(s)‖α ds

for the Bellman-Gronwall theorem, we can conclude that

‖u(t)‖α ≤ Ce
∫ t

t0
c(t−s)−αds
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.

) > 0 of the system (1) with
initial condition v(t

)). So, we conclude
that z is a solution of the system (1) with z(t

, the unique solution of
the system (1) with u(t

> τ and
assume that there exists an unique solution of the system (1)
defined in (t

(t, x) satisfies hypothesis (2) for each i ∈ J1, mK. Further-



≤ C ∀t ∈ (t, t1).

Which is a contradiction with the fact that ‖u(tn)‖α → +∞
when tn → t−1

Similarly to the problem with a single equation, using the pro-
perties and estimations of sectorial operators, we state a general
result concerning the existence and uniqueness of solutions to
systems of equations, when the diffusion terms are given by
sectorial generators, also, assuming additional hypothesis on
the forcing term, a result of global existence in time is pre-
sented. The computations stated in the paper are based in the
application of the Banach Fixed Point Theorem.
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