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Abstract: This work is based on the comparison of three techniques for analyzing the qualitative behaviour of nonlinear
dynamic systems, including the study of their finite and infinite equilibrium points. The qualitative techniques used are:
the direct method of Lyapunov, the theorems of Dickson and Perko for second order quadratic differential systems and
the linearization around finite equilibrium points. These techniques provide information about the local or global stability
of nonlinear systems. The state feedback controlled Buck-Boost power converter will be used as a case of study.
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Análisis Cualitativo del Comportamiento del Convertidor de
Potencia Buck-Boost por Realimentación del Vector de Estado a

Través de Tres Diferentes Técnicas
Resumen: Este trabajo se basa en la comparación de tres técnicas de análisis del comportamiento cualitativo de siste-
mas dinámicos no lineales, incluyendo el estudio de los puntos de equilibrio finitos e infinitos. Las técnicas cualitativas
utilizadas son: el Método Directo de Lyapunov, los Teoremas de Dickson y Perko para sistemas cuadráticos de segundo
orden y la Linealización alrededor de los puntos de equilibrio finitos. Estas técnicas aportan información respecto a la
estabilidad global o local del sistema no lineal. Como sistema dinámico no lineal se utilizará el convertidor de potencia
Buck-Boost realimentado por medio del vector de estados.

Palabras claves: Sistemas No Lineales, sistemas acotados, análisis cualitativo de sistemas dinámicos, técnicas de Lya-
punov method, convertidor de potencia Buck-Boost.

1. INTRODUCTION

It is known that some of the inherent qualitative characteristics
of dynamic systems have been specified through rigorous analy-
tic techniques. However in the specific case of nonlinear systems,
there may be examples where there are not explicit solutions for
the differential equations that describe their dynamics, and further,
there are systems that exhibit multiple equilibrium points, limit
cycles, bifurcations, among other features. Under these circums-
tances, the qualitative analysis of differential equations is a viable
alternative to learn about the dynamic behaviour of these systems.
In this sense, the converse theorems are key tools in the stabi-
lity analysis of dynamic systems. Some classical references on
the subject are the works reported in Krasovskii (1963) and Hahn
(1967). More recent references are the papers presented in Khalil
(2000) and Fantoni and Lozano (2002). The references mentioned
have been developed as a result of the research effort published in
Lyapunov (1892); where the local and global equilibrium points

in linear systems and in some nonlinear systems are studied. A

concise reference to the concepts of the theory of Lyapunov is the
text by Slotine and Li (1991).

In general, local results do not provide a comprehensive explana-
tion of the behaviour of nonlinear systems. Therefore it is neces-
sary to use other tools for the study of systems of second order
quadratic differential equations, as the one considered in this pa-
per. For this purpose, two references that analyze the behaviour of
these differential equations are used: the first is aimed at sorting
through the use of inequalities the different behaviours of boun-
ded quadratic systems Coppel (1966), and the second is the work
shown in Dickson and Perko (1970) which, through qualitative
analysis of these dynamic systems, seeks to classify them in terms
of an atlas represented in phase portraits. Both references are sum-
marized in the textbook Perko (2000).

An application to stability analysis through the qualitative tech-
niques referenced above is presented in Spinetti-Rivera (2011),
where the behaviour of the Boost power converter is discussed.

The analysis technique presented in Spinetti-Rivera (2011) was
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validated by answering the questions presented in the work of
Sira-Ramírez (2005), on the stability of the operation in some po-
wer converters. This analysis technique was complemented and
improved in successive works published by Spinetti-Rivera et al.
(2015) and Llibre et al. (2015). Some of the tools used in this
work for qualitative analysis of quadratic closed loop feedback
systems were obtained from the work Coll et al. (1987) and Gia-
comini et al. (1996). This paper develops a qualitative analysis of a
nonlinear closed-loop system, specifically the Buck-Boost power
converter with a state vector feedback. It is a second order non-
linear quadratic differential system that has no explicit solution.
It is intended to study the behaviour of the trajectories between
finite and infinite equilibrium points, with respect to changes in
system and controller parameters, specifically when there is a sin-
gle finite equilibrium point; for which three techniques are used,
namely, the direct method of Lyapunov, the theorems of Dickson
and Perko for second order quadratic differential systems and the
linearization around finite equilibrium points.

2. BUCK-BOOST POWER CONVERTER

The main characteristic of the Buck-Boost circuit design can be
operate as a step up or as a step down voltage converter, that is,
its output voltage may be lower or higher than the power supply.
Figure 1 illustrates its circuit diagram.
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Figure 1. Illustration of the Buck-Boost circuit design.

The paper in Sira-Ramírez (1988) shows how the average beha-
viour of the circuit of Figure 1 may be represented by a continuous
time model, applying the laws of Kirchhoff and Ohm. This is:

L
di
dt

= (1−u)v+(u)E,

C
dv
dt

= − (1−u) i− v
R

,
(1)

where i is the inductor current, v the voltage on the capacitor, R
the resistance of the load, L the inductance of the coil, C the ca-
pacitance, E the power supply and u the DC control input, which
is defined in the range [0,1] . In order to facilitate the calculations,

let τ and Q be defined as τ =
t√
LC

and Q = R

√
C
L

, and let the

linear transformation given in equation (2) be applied to system
(1) [

x
y

]
=

 1
E

√
C√
L

0

0
1
E

[ i
v

]
. (2)

The normalized system (1) may be represented as

dx
dτ

= ẋ = (1−u)y+ u,

dy
dτ

= ẏ = − (1−u)x− y
Q

,
(3)

where the normalized variable x(τ) = x is the coil current, y(τ) =
y is the capacitor voltage, Q is the charge and u ∈ [0,1] is the
control input. The equilibrium points of the open loop system (3)
are given as

x̄ =
ȳ (ȳ−1)

Q
, ū =

ȳ
ȳ−1

, (4)

wherein the desired value of the output voltage of the capacitor Vd
is equilibrium value of the system, that is, ȳ = Vd/E < 0.

By moving system (3) to the origin, which is achieved through the
change of coordinates defined by e1 = x− x̄, e2 = y− ȳ, eu = u− ū,
the following exact error dynamics is obtained

ė1 = (1− eu− ū)e2 + ȳ (1− eu− ū)+ eu + ū,

ė2 = (eu + ū−1)e1−
e2

Q
− x̄ (1− eu− ū)−

ȳ
Q

.
(5)

Before making the analysis of equilibrium points, the feedback
control loop using the state vector with a gain k = [α β ] will be
considered. Thus, the equation of the control law is defined by

eu = −k
[

e1
e2

]
= − (αe1 +βe2) . (6)

The dynamics of the closed loop system is obtained replacing the
controller (6) in (5) and the equilibrium values of x̄ and ū given in
(4). That is

ė1 = α (ȳ−1)e1 +

(
β (ȳ−1)2−1

)
ȳ−1

e2 +αe1e2 +βe2
2,

ė2 =

(
Q−α ȳ(ȳ−1)2

)
(ȳ−1)Q

e1−
β ȳ (ȳ−1)+ 1

Q
e2−βe1e2−αe2

1.

(7)
Equating to zero the right sides of (7), solving for e1 in the first
equation and substituting it into the second equation, the equili-
brium equation based on ē2 is obtained

p (ē2) = ē3
2 +

(
β

α
Q+ 3ȳ−2

)
ē2

2+

Q
(

β (ȳ−1)2−1
)
+α(ȳ−1)2 (2ȳ−1)

α (ȳ−1)
ē2 = 0.

(8)

Since (8) is a polynomial of degree three, the Cardano method to
characterize its roots will be used. The discriminant of Cardano
∆C is as follows

∆C =
(

Q
(

β (ȳ−1)2−1
)
+α(ȳ−1)2 (2ȳ−1)

)2(
Q2 (ȳ−1)β 2 + 2αQ (ȳ−1) ȳβ +α2 (ȳ−1) ȳ2 + 4Qα

)
.

(9)
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• If ∆C > 0, there will be a real root and two complex non-real
roots.

• If ∆C = 0, there will be a double real root and a single real
root.

• If ∆C < 0, there will be three real roots.

This work will analyze only the case when there is one real equi-
librium point; for which Proposition 1 establishes the range of va-
lues for the parameters.

Proposition 1. The existence of a single real equilibrium point is
defined by the conditions

α > 0 and

−α
ȳ
Q
−2
√
− α

Q(ȳ−1)
< β <−α

ȳ
Q
+ 2
√
− α

Q(ȳ−1)
.

Proof. Restrictions for the parameters are: Q > 0, ȳ < 0, α ,β ∈
(−∞,∞). The equation of Cardano states that if ∆C > 0 then there
will be a single real equilibrium point. Thus, from Equation (9)
the following set of inequality solutions is obtained

• α > 0,

• β1 < β < β2, where β1,2 = −α
ȳ
Q
∓2
√
− α

Q(ȳ−1)
.

This range is defined as

R∆C = {(α ,β ) ∈R|α > 0∧β1 < β < β2} .

3. LYAPUNOV STABILITY ANALYSIS

In order to apply the concept of stability in the sense of Lyapunov,
under the conditions provided in Proposition 1, it is necessary to
have a single real equilibrium point located at the origin (0,0).

Theorem 1. System (7) is globally stable if there is a unique equi-
librium point.

Proof. Let the positive definite Lyapunov function candidate V (e)
be defined as

V (e) =
1
2

[
e1
e2

]T [ 1 0
0 1

][
e1
e2

]
.

According to the direct method of Lyapunov, if the derivative of
the Lyapunov function candidate evaluated in the trajectories of
the dynamical system is negative definite, then the system will
display a globally stable behaviour. The derivative V̇ (e) is defined
as

V̇ (e) =
[

e1
e2

]T [ 1 0
0 1

][
ė1
ė2

]
. (10)

Substituting Equation (7) in (10) yields an error dependent equa-
tion, which has the form V̇ (e) = eT Me+eT Ke, where M is a sym-
metric matrix and K is a skew symmetric matrix defined as follow

M =

 α(ȳ−1)
β (ȳ−1)2−1

ȳ−1
Q−α ȳ(ȳ−1)2

(ȳ−1)Q
−β ȳ (ȳ−1)+ 1

Q

 ,

K =

[
0 αe1 +βe2

−αe1−βe2 0

]
.

Since V̇ (e) is the sum of two quadratic forms and eT Ke = 0, by
decomposing the matrix M in a symmetric matrix plus an skew
symmetric matrix, i.e. M = Ms +Ma, the derivative of the Lyapu-
nov function candidate turns into V̇ (e) = eT Mse+ eT Mae, where

Ms =

 α (ȳ−1)
1
2
(ȳ−1) (Qβ −α ȳ)

Q
1
2
(ȳ−1) (Qβ −α ȳ)

Q
ȳ (1− ȳ)β −1

Q

 ,

and Ma is the skew symmetric matrix of Ms. Since the term
eT Mae = 0, it suffices analyzing the function V̇ (e) = eT Mse.
Rewriting V̇ (e), the derivative of the Lyapunov function candidate
takes the form V̇ (e) = −eT (−Ms)e, namely

V̇ (e) =−
[

e1
e2

]T

 −α (ȳ−1) −1
2
(ȳ−1) (Qβ −α ȳ)

Q

−1
2
(ȳ−1) (Qβ −α ȳ)

Q
− ȳ (1− ȳ)β −1

Q

[ e1
e2

]
,

where the sign of V̇ (e) depends on the sign of the matrix −Ms.
According to Sylvester criterion it suffices that −Ms > 0, so that
V̇ (e) < 0. In order to satisfy that −Ms > 0, the minors of the ma-
trix−Ms must have positive determinants. These determinants are
defined as:

• The determinant of the first minor is ∆1 = −α(ȳ−1).

• The determinant of the matrix −Ms is given as

∆2 = β 2 (ȳ−1)Q2 + 2α
(
β ȳ2−β ȳ+ 2

)
Q+α2ȳ2 (ȳ−1) .

To ensure compliance of ∆1 > 0, it is necessary that −α(ȳ−1)>
0, which is true if and only if α > 0, because by definition ȳ <
0. For ∆2 > 0, it is necessary to write it in terms of a quadratic
polynomial defined as

p(β ) = β 2
(
Q2(ȳ−1)

)
+β (2αQȳ(ȳ−1))+(

4αQ+α2ȳ2(ȳ−1)
)
> 0,

(11)

since the term that accompanies β 2 is negative definite
(Q2(ȳ−1)< 0), then the polynomial p(β ) is positive definite wit-
hin the interval of its solutions

−α
ȳ
Q
−2
√
− α

Q(ȳ−1)
< β <−α

ȳ
Q
+ 2
√
− α

Q(ȳ−1)
.

Note that since of Q > 0, α > 0 and ȳ < 0, then the determinant
of Equation (11) satisfies ∆p(β ) = −

α

Q(ȳ−1)
> 0; implying that
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β1,2 ∈R and there will always exist an interval (β1,β2) in which
p(β )> 0 and therefore, the interval where V̇ (e)< 0 is defined by
the set RL, given by

RL = {(α ,β ) ∈R|α > 0∧β1 < β < β2} . (12)

From the above analysis it is shown that V̇ (e)< 0 on RL defined by
(12). Also, RL = R∆C when there is a unique point of equilibrium
and therefore this equilibrium point is globally stable.

Corollary 1. In the boundary conditions for the System (7) stabi-
lity in the sense of Lyapunov does not apply.

Proof. If the discriminant of Cardano ∆C is analyzed using equa-
tion (9), it may be appreciated that if β = β1 or β = β2 then
∆C = 0, which implies that there are two equilibrium points, and
therefore the concept of global stability in the sense of Lyapunov
cannot be applied.

4. ANALYSIS VIA THEOREMS OF DICKSON AND PERKO

Theorems of Dickson and Perko (1970), see Appendix, allow qua-
litative analysis of quadratic second order systems. Theorem 5 is
formulated to analyze Bounded Quadratic Systems (BQS), while
Theorem 6 facilitates studying the qualitative behaviour of sys-
tems with a unique real equilibrium point (BQS1).

4.1 Bounded Quadratic Systems (BQS)

According to Theorem 5 of Appendix, after applying a linear
transformation, System (7) must be affine and equivalent to one
of the following Systems (25), (26) or (27).

Theorem 2. The quadratic system described by (7) is bounded.

Proof. Consider System (7) and the linear matrix transformation
defined by e = θz[

e1
e2

]
=

[
θ11 θ12
θ21 θ22

][
z1
z2

]
, (13)

where θ11, θ12, θ21 and θ22 are constants. Substituting Equation
(13) into (7) the following system of differential equations is ob-
tained

ż1 = Θ1z2
1 +Θ2z1z2 +Θ3z2

2 +Θ4z1 +Θ5z2,
ż2 = Θ6z2

1 +Θ7z1z2 +Θ8z2
2 +Θ9z1 +Θ10z2.

(14)

Where Θ1,...,Θ10 are parameters which depend on θ11, θ12, θ21,
θ22, Q, ȳ, α and β . Equation (14) may be rewritten in the form of
the system of equations (27). This is

ż1 = a11z1 + a12z2 + z2
2,

ż2 = a21z1 + a22z2− z1z2 + cz2
2.

(15)

In order to accomplish this transformation, it is necessary to select
Θ1 = 0, Θ2 = 0, Θ3 = 1, Θ6 = 0, Θ7 = −1 and to solve the
system of algebraic equations which result in

θ11 =
β

α2 +β 2 , θ12 = θ21 =
−α

α2 +β 2 , θ22 =
−β

α2 +β 2 .

(16)

By replacing the coefficients (16) in (14), the parameters of system
(15) are

a11 = Θ4 = −
α2

(α2 +β 2)Q
,

a12 = Θ5 =

(
α2 +β 2

)(
β (ȳ−1)2−1

)
Q+α3(ȳ−1)2ȳ

(α2 +β 2) (1− ȳ)Q
+

αβ (ȳ−1) (1+β (ȳ−1) ȳ)
(α2 +β 2) (1− ȳ)Q

,

a21 = Θ9 = −
(
Q
(
α2 +β 2

)
+αβ (ȳ−1)

)
(α2 +β 2) (ȳ−1)Q

,

a22 = Θ10 = −
(

β 2

(α2 +β 2)Q
+α (ȳ−1)−

β (ȳ−1) ȳ
Q

)
,

c = Θ8 = 0.
(17)

Since Q > 0 then a11 < 0 and therefore, according to Theorem 5,
systems (15) and (7) are bounded.

It should be noted that Theorem 2 ensures that system (7) is boun-
ded for any configuration of finite and infinite equilibrium points.
Figure 2 shows the equilibrium points at infinity in a saddle–node
configuration, where the circle corresponds to the neighborhood
of infinite.

Figure 2. Phase Portraits of a Bounded Quadratic Systems (BQS).

4.2 Bounded quadratic systems with a unique real equilibrium
point (BQS1)

Theorem 6 of the appendix allows analyzing the different qualita-
tive behaviours when there is a unique finite equilibrium point in a
system of the type (27); and does so by means of phase diagrams,
including both the finite equilibrium point as those at infinity. Ac-
cording to Theorem 6 there are four configurations, of which (a)
and (b) cannot be used because system (7) is affine to a (27) type
system, and these are mutually exclusive. Thus, system (7) may
be of type (c) or (d). It will be shown that the only feasible confi-
guration for (7) is (c).

Theorem 3. Given the following parameters restrictions: Q >

0, ȳ < 0, α > 0 and −α
ȳ
Q
− 2
√
− α

Q(ȳ−1)
< β < −α

ȳ
Q

+

2
√
− α

Q(ȳ−1)
, then system (7) has the configuration type (c) of

Figure 6.

Proof. According to Theorem 6(c) of the appendix, System (27)
will have a unique equilibrium point if the following conditions
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are satisfied:

(i) a11 < 0, (ii) (a12−a21 + ca11)2 < 4(a11a22−a21a12),
(iii) a11 + a22 ≤ 0.

(18)
Theorem 2 allows to satisfy the condition (18)(i). For the second
condition, substituting parameters (17) in (18)(ii) results

f = β
2 + 2

α

Q
ȳβ +

(
α

Q
ȳ
)2

+ 4
α

Q (ȳ−1)
< 0. (19)

Equation (19) is valid in the interval (β1,β2) where β1,2 =

−α
ȳ
Q
∓2
√
− α

Q(ȳ−1)
, i.e.,

−α
ȳ
Q
−2
√
− α

Q(ȳ−1)
< β <−α

ȳ
Q
+ 2
√
− α

Q(ȳ−1)
. (20)

The discriminant of f is ∆ f =−
α

Q(ȳ−1)
and β1,2 ∈R if and only

if α > 0.

For the third condition, parameters (17) are substituted into Equa-

tion (18)(iii) which results in β ≥ Q(ȳ−1)α−1
(ȳ−1)ȳ

. This defines an

interval [βa,∞) where βa =
Q(ȳ−1)α−1

(ȳ−1)ȳ
.

Note that (β1,β2) ∩ [βa,∞) = (β1,β2), so the range in which
(18)(iii) is fulfilled is (20), with α > 0, which shows that (7) is
a type (c) system. According to Theorem 5, (7) will be a type (d)
system if it satisfies the following conditions:

(i) a11 < 0, (ii) (a12−a21 + ca11)2 < 4(a11a22−a21a12),
(iii) a11 + a22 > 0.

(21)
Analogously, Theorem 2 proves that (21)(i) is valid; and the above
analysis, in the interval (β1,β2), shows that (21)(ii) =(18)(ii). For
the third condition, parameters (17) are substituted into (21)(iii)

and β <
Q(ȳ−1)α−1

(ȳ−1)ȳ
is obtained, which defines an interval

(−∞,βb), where βb =
Q(ȳ−1)α−1

(ȳ−1)ȳ
. The intervals are such that

(β1,β2)∩ (−∞,βb) = /0 and therefore, since condition (21)(iii) is
not satisfied, (7) cannot be a type (d) system.

In summary, the set RL given in (12) defines the range within
which system (7) is BQS1.

Corollary 2. Since (7) is a BQS1 type (c) system, it is globally
stable.

Proof. Since (7) is BQS1 type (c), then there is a unique real equi-
librium point to which all trajectories converge; that is, the system
is globally stable.

Corollary 3. Since (7) is BQS1 type (c) system, then it has no
limit cycles.

Proof. Since (7) is BQS1 type (c) and it cannot be represented as
type (d), then there is no limit cycle or periodic solution.

5. QUALITATIVE ANALYSIS AROUND FINITE EQUILIBRIUM
POINTS

System (7) will be analyzed locally with respect to its finite equi-
librium points using the linearization method that is described in
Dumortier et al. (2006), section 1.5.
The procedure consists of two steps; first the finite equilibrium
point is obtained. Next, the Jacobian matrix associated with Equa-
tion (8) at this equilibrium point is evaluated. Thus the linearized
version of the original nonlinear system is obtained. Equations (8)
and (9) define the equilibrium equation and the determinant of
Cardano ∆C, respectively. The Jacobian matrix A is given as

A =

 α (ȳ−1)
β (ȳ−1)2−1

(ȳ−1)
Q−α(ȳ−1)2ȳ

Q (ȳ−1)
−β (ȳ−1) ȳ+ 1

Q

 .

On the other hand, the eigenvalues of A are defined as

λ1,2 = −
1

2Q
+α

(ȳ−1)
2
−β

(ȳ−1)
2Q

ȳ

±
√

4Q((ȳ−1)2(2ȳ−1)α+Q((ȳ−1)2
β−1))+(ȳ−1)2(1+(ȳ−1)(ȳβ−Qα))2

2Q(ȳ−1) .
(22)

The local behaviour at the origin of coordinates may be interpreted
using the following theorem.

Theorem 4. The origin of coordinates is an attractor.

Proof. The origin of the linearized system is an attractor, if the
system possesses a unique equilibrium point and its eigenvalues
are negative. This is accomplished with the following restrictions:

(i) ∆C > 0,

(ii) λ1λ2 =
Q− (ȳ−1)2 (2ȳ−1)α−Q(ȳ−1)2

β

Q(ȳ−1)2 > 0,

(iii) λ1 +λ2 =
(ȳ−1) (Qα− ȳβ )−1

Q
< 0.

The above restrictions are satisfied for the following conditions on
the parameter

α > 0, −α
ȳ
Q
−2
√
− α

Q(ȳ−1)
< β <−α

ȳ
Q
+2
√
− α

Q(ȳ−1)
.

These conditions are the same that define the set RL given in Equa-
tion (12).
In order to verify if the origin is a repeller, restriction (i) in addi-
tion to the following restrictions are used

(iv) λ1λ2 =
Q− (ȳ−1)2 (2ȳ−1)α−Q(ȳ−1)2

β

Q(ȳ−1)2 > 0,

(v) λ1 +λ2 =
(ȳ−1) (Qα− ȳβ )−1

Q
> 0.

It is easy to verify that there are not values of parameters that
would make the origin to behave as a repeller.
To check if the origin of coordinates is a saddle, the restriction (i)
and the following restriction are taken into account
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(vii) λ1λ2 =
Q− (ȳ−1)2 (2ȳ−1)α−Q(ȳ−1)2

β

Q(ȳ−1)2 < 0.

There are not values of parameters that would make the origin to
behave as a saddle.
To verify if the origin of coordinates is a center, the restriction (i)
and the following restrictions are considered

(viii) Re{λ1,λ2}= 0,

(ix) Im{λ1,λ2} 6= 0.

From (viii) and (22) results Re{λ1,λ2} = 0 ⇒ − 1
2Q

+

α
(ȳ−1)

2
−β

(ȳ−1)
2Q

ȳ = 0. Also, from (ix) and (22) results

Im{λ1,λ2} 6= 0⇒ 4Q
(
(ȳ−1)2 (2ȳ−1)α +Q

(
(ȳ−1)2

β −1
))

+

(ȳ−1)2(1+(ȳ−1) (ȳβ −Qα))2 < 0.
There are not values of parameters that would make the origin to
behave as a center.

Theorem 4 may be used to prove that the origin of coordinates,
which is the unique real equilibrium point, can only be an attrac-
tor; and it is in the RL set defined in Equation (12). Also, the sys-
tem is locally stable.

6. EXAMPLE 1

For simplicity the standard model (5) is used. For results in the ori-
ginal coordinates it is sufficient to apply the transformation matrix
(2). Using equation (6) and errors eu = u(t)− ū, e1 = x(t)− x̄,
e2 = y(t)− ȳ the following controller is obtained

u (t) = ū−a (x (t)− x̄)−b (y (t)− ȳ) , (23)

where the equilibrium points are evaluated using (4). Substituting
(23) in the standard model (5), the closed-loop normalized conver-
ter dynamics is obtained

ẋ (t) = (1+ a (x (t)− x̄)+ b (y (t)− ȳ)− ū)y (t)−
a (x (t)− x̄)−b (y (t)− ȳ)+ ū,

ẏ (t) = − (1+ a (x (t)− x̄)+ b (y (t)− ȳ)− ū)x (t)−
y (t)

Q

.

(24)
Here x(t) and y(t) correspond to the normalized variables inductor
current and capacitor voltage, respectively. By selecting the values
of the parameters Q = 1, a = 1, b = 1, ȳ =−2, the coordinates of
the equilibrium point turn out to be x̄= 6 y ū= 2/3. The computer
simulation is performed with the PPlane-Matlabr program.
In Figure 3a the phase diagram for the variables x,y is shown.
The red dot indicates the coordinates (x̄, ȳ) = (6,−2) of the equi-
librium point. The corresponding eigenvalues of the equilibrium
points are λ1 = −0,429 and λ2 = −9,5704; ensuring that it is an
attractor. The nullclines in Figure 3a are shown in yellow and pink
colors. This figure also included three trajectories in blue (ie the
trajectory that passes through the origin (0,0)). Figure 3b shows
the trajectories x(t) and y(t) with respect to normalized time. It
is observed that both the normalized inductor current and the nor-
malized capacitor voltage converge to the coordinates of the equi-
librium point (x̄, ȳ) = (6,−2).
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Figure 3. Simulations of Buck-Boost Converter Using Normalized Model

7. EXAMPLE 2

In order to visualize realistic effects on the Buck-Boost conver-
ter dynamics, the following example considers firstly the use of
the average model equation (1), without including the switch and
assuming that the input is defined in the continuous range u=[0,
1]. The simulation is performed in Mat Lab, with parameters
C = 50 µF , L = 500 µH, R = 10 ohms and E = 10 volts. Figures
5a, 5b and 5c show the current in the inductor, the voltage in the
capacitor and the control input. It is shown that with initial con-
ditions i(0) = 0 and v(0) = 0 the trajectory converges to a single
equilibrium (i,v) = (2,−10).
Note: in the average model Equation (1) the equilibrium point is
placed in different coordinates of the origin (0,0).
Now, the Buck-Boost converter is simulated using the Orcad-
Pspice program to implement the circuit diagram shown in Figure
4. Mathematical models accurately approximate the behaviour of
each of the elements that constitute the converter and in this case, a
transistor and a diode operate as the discrete switch of the conver-
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ter, so it is called a switch model. The characteristics that include
the circuit diagram implemented with Orcad-Psice are the follo-
wing: internal resistance of the inductor RL = 0.1 ohm, transistor
model IRFZ34, diode MUR150, pulse width modulator (PWM)
at a frequency of 20 KHz; and the parameters were selected as
C = 50 µF , L = 500 µH, R = 10 ohms and E = 10 volts. The con-
trol is ideally treated since it can be implemented by means of a
microprocessor. Figures 5a, 5b and 5c show the behaviour of each
of the variables of the switch model when the initial conditions are
i(0) = 0 and v(0) = 0. The coordinates of the equilibrium point
of the switch model correspond to (i,v) = (2,75,−8,5).
In both cases the non-normalized control took the form

u = −α

(
1
E

√
L
C

i− ȳ
(ȳ−1)

Q

)
−β

( v
E
− ȳ
)
+

ȳ
(ȳ−1)

.
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Figure 4. Diagram of Buck-Boost Converter Using Orcad-Pspice Software

The differences between the two models are due to the energy los-
ses produced by semiconductors and conductors; i.e. the conducti-
ve voltage drops of the semiconductors and the internal resistance
of the conductors and semiconductors. The results show the exis-
tence of a single equilibrium point.

8. ANALYSIS OF RESULTS

Table 1. Qualitative analysis results of System (7) with different techniques.

Qualitative Bounded for any Bounded with a unique real
Analysis value of the equilibrium point (BQS1)

Technique parameters (BQS)
Lyapunov Not shown if bounded Globally Stable

Dickson–Perko Bounded Globally Stable
Linearization Not shown if bounded Locally Stable

Dickson–Perko
and Linearization

Bounded Globally Stable

There have been used three techniques to study the qualitative
behaviour of a second order nonlinear dynamic system. These
techniques have corresponded to the direct method of Lyapunov,
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Figure 5. Simulations of Buck-Boost Converter Using Average Model and
Switching Model

theorems of Dickson and Perko and the approximate linearization
of nonlinear systems. In all three cases, the analysis has led to the
same set where the parameters of the system were defined.
The results of the analysis performed with each of the techniques
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have been summarized in Table 1.

• The direct method of Lyapunov allows to demonstrate global
stability of System (7) but this does not allow demonstrating
boundedness (BQS) for any variation of the parameters.

• Theorems 5 and 6 of Dickson and Perko may be used to prove
that System (7) is bounded (BQS), regardless of the values of
its parameters.

It also demonstrates that when it exists there is a unique real
equilibrium point (BQS1) the System (7) is globally stable
and there are no limit cycles in its trajectories.

• Approximate Linearization allows local analysis and provi-
des no information on the overall behaviour of System (7) or
its boundedness (BQS). It also demonstrate that when there is
a unique real equilibrium point is an attractor and therefore
the System (7) is locally stable.

• If the Theorems of Dickson and Perko is using to demons-
trate the boundedness feature (BQS) and unique equilibrium
point existence. If the approximate linearization method is
used then it can be concluded that System (7) is BQS1.

9. CONCLUSIONS

In this work an analysis of the behaviour of the trajectories around
the equilibrium points of the Buck–Boost power converter with
state vector feedback, using qualitative techniques for dynamic
systems has been presented.
The closed loop system has a bifurcation of the equilibrium points.
There may exist one, two or three points of finite equilibrium
points. In the whole range of the parameters the system is bounded
(BQS) for any configuration of finite equilibrium points and there
are no limit cycles.
The direct method of Lyapunov can be used to ensure the system
global stability. With the Theorems of Dickson and Perko a glo-
bal qualitative behaviour of the system is obtained with a unique
equilibrium point. Both cases provide conditions in the control pa-
rameters demonstrate that all trajectories converge to the unique
equilibrium point.
Linearization around the origin of coordinates, where it is loca-
ted the equilibrium point, facilitates establishing conditions on the
control parameters to ensure that it is a local attractor.
The direct method of Lyapunov and the Theorems of Dickson and
Perko allowed to obtain results on the general behaviour of the
system, while the approximate Linearization only allowed to gi-
ve local results where it is considered as global for the case study
using the results of boundedness, together with the absence of li-
mit cycles for the BQS1.
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Appendix:

11. THEOREM OF DICKSON AND PERKO

Theorem 5. Any (BQS) is affinely equivalent to

ẋ = a11x, ẏ = a21x+ a22y+ xy (25)

with a11 < 0 and a22 ≤ 0, or

ẋ = a11x+ a12y+ y2, ẏ = a22y (26)

with a11 ≤ 0, a22 ≤ 0 and a11 + a22 < 0, or

ẋ = a11x+ a12y+ y2, ẏ = a21x+ a22y− xy+ cy2 (27)

with |c| < 2 and either (i) a11 < 0; (ii) a11 = 0 y a21 = 0; or
(iii) a11 = 0, a21 6= 0, a12 + a21 = 0 and ca21 + a22 ≤ 0.

Theorem 6. The phase portrait of any (BQS1) is determined by
one of the separatrix configurations in Figure 6. Furthermore, the
phase portrait of a quadratic system is given by Figure 6.

(a) iff the quadratic system is affinely equivalent to (25) with
a11 < 0 and a22 < 0;

(b) iff the quadratic system is affinely equivalent to (26) with
a11 < 2a22 < 0;

(c) iff the quadratic system is affinely equivalent to (26) with
2a22 ≤ a11 < 0 or (27) with |c|< 2 and either

(i) a11 = a22 + a21 = 0, a21 6= 0 and a22 < min(0,−ca21)
or a22 = 0 <−ca21,

(ii) a11 < 0, (a12−a21 + ca11)2 < 4(a11a22−a21a12), and
a11 + a22 ≤ 0, or

(iii) a11 < 0 y (a12−a21 + ca11) = (a11a22−a21a12) = 0;

(d) iff the quadratic system is affinely equivalent to (27) with
|c|< 2 and either

(i) a11 = a12 + a21 = 0 and 0 < a22 <−ca21, or

(ii) a11 < 0,a11 + a22 > 0, and (a12 − a21 + ca11)2 <
4(a11a22−a21a12).

(a) (b)

(c) (d)

Figure 6. All possible phase portraits for (BQS1).
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