Simulación de un Detector de HPGe con GEANT4

##plugins.themes.bootstrap3.article.main##

Sebastián Sarasti Zambonino

Tania Barahona

Roque Santos


Palabras clave:
Gamma spectroscopy, Instrumental analyses, Monte-Carlo simulations, radiation transport Espectroscopía gamma, Análisis instrumental, Monte-Carlo simulaciones, transporte de radiación

Resumen

La espectroscopía gamma es una técnica analítica que identifica los isótopos mediante las emisiones de rayos gamma de cada uno de estos. En la actualidad, esta técnica tiene gran relevancia debido a un amplio espectro de aplicaciones como el estudio de la hidrodinámica del suelo y otras aplicaciones. Con el desarrollo de la computación moderna, se han desarrollado softwares de simulación Monte-Carlo que permiten estimar la respuesta de los detectores empleados en la espectroscopía gamma. El objetivo de este trabajo es desarrollar una aplicación en GEANT4 para estimar la eficiencia máxima de energía total para un detector de HPGe y determinar la desviación de los datos experimentales. Para lo cual, se realizó mediciones de Am-241, Eu-152, Cs-137, y Co-60 a las distancias de 0, 5, 10, 20 y 25 cm desde el recubrimiento superior del detector, cada uno respectivamente. La simulación se desarrolló mediante acciones de usuario para extraer la energía depositada en el volumen sensible. A partir de esto, se determinó la eficiencia máxima de energía total de los datos experimentales, luego se determinó un factor de detección que estimaba la desviación del resultado simulado con experimental. Se planteó que una razón de este comportamiento es la ausencia de la simulación de la cadena electrónica. Finalmente, se sugiere que futuros trabajos desarrollen simulaciones más precisas para isotopos multiemisores.

Descargas

Descargas

Los datos de descargas todavía no están disponibles.




Detalles del artículo

Biografías de los autores/as

Tania Barahona, Escuela Politécnica Nacional, Departamento de Ingeniería Química, Quito, Ecuador

Tania Barahona. Nació en Sangolquí en 1994. Se graduó como Ingeniera Química de la Escuela Politécnica Nacional en mayo del 2021. Realizó su trabajo de titulación en el Departamento de Ciencias Nucleares con el título de “Desarrollo de un modelo digital para la simulación de un detector de Germanio Hiperpuro (HPGe) frente a fuentes de diferente geometría"; con lo cual adquirió experiencia en espectrometría gamma con detectores semiconductores y en la simulación de transporte de radiación en Monte Carlo N-Particle (MCNP). ORCID ID: 0000-0003-2234-2522

Roque Santos, Escuela Politécnica Nacional, Departamento de Ciencias Nucleares, Quito, Ecuador

Roque  Santos. Nació  en  Quito en    1983.    Se    graduó    como ingeniero  químico  de  la  Escuela Politécnica Nacional en marzo de 2009.   En   el   2010   obtuvo   la maestría en Ingeniería Nuclear y Aplicaciones  por  la  Universidad Autónoma de Madrid. Se incorporó  en  el  año  2010  a  la Escuela    Politécnica    Nacional como  docente  del  Departamento de Ciencias Nucleares. En el año 2017  obtiene  su  Doctorado  en Ingeniería   Nuclear   en   la   Universidad   de   Tennessee   en Knoxville.  La  investigación  del  Dr.  Santos  se  centra  en  la detección de radiaciones aplicada a la Ingeniería Química. Número ORCID: 0000-0002-4202-5818

Citas

Abbas, M. I. (2010). Analytical formulae for borehole scintillation detectors efficiency calibration. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 622(1), 171–175. https://doi.org/10.1016/J.NIMA.2010.06.241

Abbas, M. I., Nafee, S., & Selim, Y. S. (2006). Calibration of cylindrical detectors using a simplified theoretical approach. Applied Radiation and Isotopes, 64(9), 1057–1064. https://doi.org/10.1016/J.APRADISO.2006.05.005

Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., … Zschiesche, D. (2003). Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250–303. https://doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8

Ahmed, R. S. (2020). A review on soil radionuclide distribution in Iraq analysed using gamma ray spectroscopy. Https://Doi.Org/10.1080/15275922.2020.1805827, 22(1–2), 91–98. https://doi.org/10.1080/15275922.2020.1805827

Aviv, O., & Elia, P. (2020). Monte-Carlo simulations of the full-energy-peak efficiency for a broad-energy germanium detector—a comparison between GEANT4 and FLUKA. Journal of Instrumentation, 15(05), P05016. https://doi.org/10.1088/1748-0221/15/05/P05016

Baldoncini, M., Albéri, M., Bottardi, C., Chiarelli, E., Raptis, K. G. C., Strati, V., & Mantovani, F. (2019). Biomass water content effect on soil moisture assessment via proximal gamma-ray spectroscopy. Geoderma, 335, 69–77. https://doi.org/10.1016/J.GEODERMA.2018.08.012

Battistoni, G., Cerutti, F., Fassò, A., Ferrari, A., Muraro, S., Ranft, J., Roesler, S., & Sala, P. R. (2007). The FLUKA code: description and benchmarking. AIP Conference Proceedings, 896(1), 31. https://doi.org/10.1063/1.2720455

Benov, D. M. (2016). The Manhattan Project, the first electronic computer and the Monte Carlo method. Monte Carlo Methods and Applications, 22(1), 73–79. https://doi.org/10.1515/MCMA-2016-0102/MACHINEREADABLECITATION/RIS

Cebastien Joel, G. S., Maurice, N. M., Eric Jilbert, N. M., Ousmanou, M., & David, S. (2018). Monte Carlo method for gamma spectrometry based on GEANT4 toolkit: Efficiency calibration of BE6530 detector. Journal of Environmental Radioactivity, 189, 109–119. https://doi.org/10.1016/J.JENVRAD.2018.03.015

del Sordo, S., Abbene, L., Caroli, E., Mancini, A. M., Zappettini, A., & Ubertini, P. (2009). Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications. Sensors 2009, Vol. 9, Pages 3491-3526, 9(5), 3491–3526. https://doi.org/10.3390/S90503491

Elekes, Z., Belgya, T., Molnár, G. L., Kiss, Á. Z., Csatlós, M., Gulyás, J., Krasznahorkay, A., & Máté, Z. (2003). Absolute full-energy peak efficiency calibration of a Clover–BGO detector system. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 503(3), 580–588. https://doi.org/10.1016/S0168-9002(03)00998-7

Hurtado, S., García-León, M., & García-Tenorio, R. (2004). Monte Carlo simulation of the response of a germanium detector for low-level spectrometry measurements using GEANT4. Applied Radiation and Isotopes, 61(2–3), 139–143. https://doi.org/10.1016/J.APRADISO.2004.03.035

Hurtado, S., Villa, M., Manjón, G., & García-Tenorio, R. (2007). A self-sufficient and general method for self-absorption correction in gamma-ray spectrometry using GEANT4. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 580(1), 234–237. https://doi.org/10.1016/J.NIMA.2007.05.090

Ješkovský, M., Javorník, A., Breier, R., Slu?iak, J., & Povinec, P. P. (2019). Experimental and Monte Carlo determination of HPGe detector efficiency. Journal of Radioanalytical and Nuclear Chemistry 2019 322:3, 322(3), 1863–1869. https://doi.org/10.1007/S10967-019-06856-4

Khan, W., Zhang, Q., He, C., & Saleh, M. (2018). Monte Carlo simulation of the full energy peak efficiency of an HPGe detector. Applied Radiation and Isotopes, 131, 67–70. https://doi.org/10.1016/J.APRADISO.2017.11.018

Kirk, B. L. (2010). Overview of Monte Carlo radiation transport codes. Radiation Measurements, 45(10), 1318–1322. https://doi.org/10.1016/J.RADMEAS.2010.05.037

Krneta Nikoli?, J., Raja?i?, M., Todorovi?, D., Jankovi?, M., Sarap, N., Panteli?, G., & Vukanac, I. (2018). Semiempirical efficiency calibration in semiconductor HPGe gamma-ray spectroscopy. Journal of Spectroscopy, 2018. https://doi.org/10.1155/2018/5392658

Martin, L. J., & Burns, P. A. (1992). The HPGe as a defined-solid-angle detector for low-energy photons. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 312(1–2), 146–151. https://doi.org/10.1016/0168-9002(92)90145-T

Sanin, A. B., Mitrofanov, I. G., Bakhtin, B. N., Litvak, M. L., Anikin, A. A., Golovin, D. v., & Nikiforov, S. Y. (2020). On the Study of the Spatial Variability of the Composition of the Lunar Material in Experiments on Gamma Spectroscopy Onboard a Mobile Spacecraft Using the Tagged-Cosmic-Rays Method. Solar System Research 2020 54:6, 54(6), 477–487. https://doi.org/10.1134/S0038094620060052

Shtatland, E. S., Kleinman, K., & Cain, E. M. (2002). One more time about R2 measures of fit in logistic regression. NESUG 15 Proceedings, 15, 222–226. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.503.5183&rep=rep1&type=pdf

Siegel, P. B. (2013). Gamma spectroscopy of environmental samples. American Journal of Physics, 81(5), 381. https://doi.org/10.1119/1.4793595

Smith, T., & Kearfott, K. J. (2018). Practical Considerations for Gamma Ray Spectroscopy with NaI(Tl): A Tutorial. Health Physics, 114(1), 94–106. https://doi.org/10.1097/HP.0000000000000804

Strati, V., Albéri, M., Anconelli, S., Baldoncini, M., Bittelli, M., Bottardi, C., Chiarelli, E., Fabbri, B., Guidi, V., Raptis, K. G. C., Solimando, D., Tomei, F., Villani, G., & Mantovani, F. (2018). Modelling Soil Water Content in a Tomato Field: Proximal Gamma Ray Spectroscopy and Soil–Crop System Models. Agriculture 2018, Vol. 8, Page 60, 8(4), 60. https://doi.org/10.3390/AGRICULTURE8040060

Vidmar, T. (2005). EFFTRAN—A Monte Carlo efficiency transfer code for gamma-ray spectrometry. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 550(3), 603–608. https://doi.org/10.1016/J.NIMA.2005.05.055

Watson, M. M., Venkataraman, R., & Croft, S. (2021). Characterization of 252Cf sources using high-resolution gamma spectroscopy. Applied Radiation and Isotopes, 169, 109531. https://doi.org/10.1016/J.APRADISO.2020.109531