Planificación de la Expansión Basada en la Máxima Cargabilidad de Líneas de Transmisión Aplicando Conmutaciones del Sistema

##plugins.themes.bootstrap3.article.main##

Manuel René Espinel Galarza

Diego Francisco Carrión Galarza


Palabras clave:
Electrical power systems, Optimal power flows, Optimal transmission switching, Transmission expansion planning, Transmission lines Conmutación óptima de transmisión, flujos óptimos de potencia, líneas de transmisión, planificación de la expansión, sistemas eléctricos de potencia

Resumen

En la presente investigación, se propone una metodología para solucionar la planificación de la expansión de la transmisión (TEP) de un sistema eléctrico de potencia (SEP) a corto plazo y largo plazo, aplicando conmutaciones en la red de transmisión, contingencias y se considera los rangos máximos de capacidad de líneas de transmisión, los cuales estarán en función de un SIL ideal. El modelo propuesto se basa en la aplicación de flujos óptimos de potencia DC (OPF-DC), lo cual permitirá reducir costos de operación y definir los costos de inversión sin que la estabilidad del sistema se vea afectada. La investigación no considera el racionamiento de la demanda, la metodología será aplicada al modelo de 118 barras del IEEE, el cual será objeto de análisis al variar el número máximo de líneas de transmisión que pueden ser conmutadas, obteniendo como resultado de la aplicación de la TEP los equipos que deben ser instalados en el SEP, para evitar problemas de estabilidad. El periodo de planificación se define para 2 y 10 años con incremento de la demanda. Adicionalmente, se mostrarán cuadros comparativos de los flujos de potencia, ángulos de voltaje y potencia despachada, en condiciones actuales de operación respecto a los escenarios planificados.

Descargas

Descargas

Los datos de descargas todavía no están disponibles.




Detalles del artículo

Citas

Aazami, R., Haghifam, M. R., Soltanian, F., Moradkhani, M. (2015). A comprehensive strategy for transmission switching action in simultaneous clearing of energy and spinning reserve markets. International Journal of Electrical Power Energy Systems, 64, 408-418. https://doi.org/10.1016/j.ijepes.2014.07.032

Abdi-Khorsand, M., Sahraei-Ardakani, M., Al-Abdullah, Y. M. (2017). Corrective Transmission Switching for N-1-1 Contingency Analysis. IEEE Transactions on Power Systems, 32(2), 1606–1615. https://doi.org/10.1109/TPWRS.2016.2614520

Al-Hamouz, Z. M., Al-Faraj, A. S. (2003). Transmissionexpansion planning based on a non-linear programming algorithm. Energy, 76(1–3), 169–177. https://doi.org/10.1016/S0306-2619(03)00060-6

Alhamrouni, I., Khairuddin, A., Ferdavani, A., Salem, M. (2014). Transmission expansion planning using ACbased differential evolution algorithm. IET Generation, Transmission Distribution, 8(10), 1637–1644. https://doi.org/10.1049/iet-gtd.2014.0001

Bachtiar Nappu, M., Arief, A., Bansal, R. C. (2014). Transmission management for congested power system: A review of concepts, technical challenges and development of a new methodology. Renewable and Sustainable Energy Reviews, 38, 572–580.

https://doi.org/10.1016/j.rser.2014.05.089

Bai, Y., Zhong, H., Xia, Q., Kang, C. (2017). A TwoLevel Approach to AC Optimal Transmission Switching with an Accelerating Technique. IEEE Transactions on Power Systems, 32(2), 1616–1625. https://doi.org/10.1109/TPWRS.2016.2582214

Bhatt, K. A., Bhalja, B. R., Parikh, U. (2018). Controlled switching technique for minimization of switching surge during energization of uncompensated and shunt compensated transmission lines for circuit breakers having pre-insertion resistors. International Journal of Electrical Power and Energy Systems, 103(April), 347–359. https://doi.org/10.1016/j.ijepes.2018.06.024

Bolaños Ocampo, R. A., Correa Florez, C. A. (2013). Planeamiento de la transmisión considerando seguridad e incertidumbre en la demanda empleando programación no lineal y técnicas evolutivas. Tecnura, 18(39), 62. https://doi.org/10.14483/udistrital.jour.tecnura.2014.1.a05

Carrión, D., Gonzalez, J. W. (2018). Optimal PMU Location in Electrical Power Systems Under N-1 Contingency. 2018 International Conference on Information Systems and Computer Science (INCISCOS), (1), 165–170. https://doi.org/10.1109/INCISCOS.2018.00031

Carrión, D., Palacios, J., Espinel, M., Gonzalez, J. W. (2021). Transmission Expanssion Planning Considering Grid Topology Changes and N-1 Contingencies Criteria. Springer (Ed), Recent Advances in Electrical Engineering, Electronics and Energy, 266–279. https://doi.org/10.1007/978-3-030-72208-1-20

Carrión, D., García, E., Jaramillo, M., González, J. W. (2021). A Novel Methodology for Optimal SVC Location Considering N-1 Contingencies and Reactive Power Flows Reconfiguration. Energies, 14(20), 1–17. https://doi.org/10.3390/en14206652

Castellanos-Bustamante, R. (2014). Determination of Transmission Limits on Electric Power Systems. Ingeniería Investigación y Tecnología, 15(2), 271–286. Obtenido de la base de datos Scielo.

Elyas, S. H., Wang, Z. (2016). Statistical analysis of transmission line capacities in electric power grids. 2016 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2016, 0–4. https://doi.org/10.1109/ISGT.2016.7781263

Fisher, E. B., O’Neill, R. P., Ferris, M. C. (2008). Optimal transmission switching. IEEE Transactions on Power Systems, 23(3), 1346–1355. https://doi.org/10.1109/TPWRS.2008.922256

Flores, M., Romero, R., Franco, J. (2017). An Analysis of the Optimal Switching Problem in Transmission Systems. 2017 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America) https://doi.org/10.1109/ISGT-LA.2017.8126720

Freitas, P. F. S., Macedo, L. H., Romero, R. (2019). A strategy for transmission network expansion planning considering multiple generation scenarios. Electric Power Systems Research, 172, 22–31. https://doi.org/10.1016/j.epsr.2019.02.018

Gomes, P. V., Saraiva, J. T. (2019). Electrical Power and Energy Systems State-of-the-art of transmission expansion planning : A survey from restructuring to renewable and distributed electricity markets. Electrical Power and Energy Systems, 111, 411–424. https://doi.org/10.1016/j.ijepes.2019.04.035

Gupta, A. K., Kiran, D., Abhyankar, A. R. (2017). Flexibility in transmission switching for congestion management. 2016 National Power Systems Conference, NPSC 2016. https://doi.org/10.1109/NPSC.2016.7858898

Hedman, K. W., O’Neill, R. P., Fisher, E. B., Oren, S. S. (2009). Optimal Transmission Switching With Contingency Analysis. IEEE Transactions on Power Systems, 24(3), 1577–1586. https://doi.org/10.1109/TPWRS.2009.2020530

Heidarifar, M., Doostizadeh, M., Ghasemi, H. (2014). Optimal transmission reconfiguration through line switching and bus splitting. 2014 IEEE Power and Energy Society General Meeting, 11–15. https://doi.org/10.1109/PESGM.2014.6939408

Hemmati, R., Hooshmand, R.-A., Khodabakhshian, A. (2013). State-of-the-art of transmission expansion planning: Comprehensive review. Renewable and Sustainable Energy Reviews, 23, 312–319. https://doi.org/10.1016/j.rser.2013.03.015

Hooshmand, R. A., Hemmati, R., Parastegari, M. (2012). Combination of AC transmission expansion planning and reactive power planning in the restructured power system. Energy Conversion and Management, 55, 26–35. https://doi.org/10.1016/j.enconman.2011.10.020

Jabarnejad, M. (2018). Approximate optimal transmission switching. Electric Power Systems Research, 161, 1–7. https://doi.org/10.1016/j.epsr.2018.03.021

Karimi, S., Musilek, P., Knight, A. M. (2018). Dynamic thermal rating of transmission lines: A review. Renewable and Sustainable Energy Reviews, 91, 600–612. https://doi.org/10.1016/j.rser.2018.04.001

Khanabadi, M., Ghasemi, H., Doostizadeh, M. (2013). Optimal transmission switching considering voltage security and N-1 contingency analysis. IEEE Transactions on Power Systems, 28(1), 542–550. https://doi.org/10.1109/TPWRS.2012.2207464

Li, X., Balasubramanian, P., Sahraei-Ardakani, M., AbdiKhorsand, M., Hedman, K. W., Podmore, R. (2017). Real-Time Contingency Analysis with Corrective Transmission Switching. IEEE Transactions on Power Systems, 32(4), 2604–2617. https://doi.org/10.1109/TPWRS.2016.2616903

Lu, M., Nagarajan, H., Yamangil, E., Bent, R., Backhaus, S., Barnes, A. (2018). Optimal Transmission Line Switching Under Geomagnetic Disturbances. IEEE Transactions on Power Systems, 33(3), 2539–2550. https://doi.org/10.1109/TPWRS.2017.2761178

Masache, P., Carrión, D. (2019). Estado del Arte de conmutación de líneas de transmisión con análisis de contingencias. Revista de I+D Tecnológico, 15(2), 98–106. https://doi.org/10.33412/idt.v15.2.2252

Masache, P., Carrión, D., Cárdenas, J. (2021). Optimal Transmission Line Switching to Improve the Reliability of the Power System Considering AC Power Flows. Energies 2021, 14(11), 3281. https://doi.org/10.3390/EN14113281

Mittelstaedt, M., Barrios, H., Schnettler, A. (2015). Identification of critical states regarding voltage stability by using a Continuation Power Flow combined contingency analysis. 2015 IEEE Eindhoven PowerTech. https://doi.org/10.1109/PTC.2015.7232649

Pal, S., Sen, S., Bera, J. Sengupta, S. (2017). Network modeling using optimal transmission switching. 2017 IEEE Calcutta Conference (CALCON), 321-324. https://doi.org/10.1109/CALCON.2017.8280748

Pinzón, S., Carrión, D. Inga, E. (2021). Optimal Transmission Switching Considering N-1 Contingencies on Power Transmission Lines. IEEE Latin America Transactions, 19(4), 534-541. https://doi.org/10.1109/TLA.2021.9448535

Ploussard, Q., Olmos, L., Ramos, A. (2018). An efficient network reduction method for transmission expansion planning using multicut problem and Kron reduction. IEEE Transactions on Power Systems, 8950(1), 1–10. https://doi.org/10.1109/TPWRS.2018.2842301

Quinteros, F., Carrión, D. Jaramillo, M. (2022). Optimal Power Systems Restoration Based on Energy Quality and Stability Criteria. Energies 2022, 15(6), 2062. https://doi.org/10.3390/en15062062

Robak, S., MacHowski, J., Gryszpanowicz, K. (2017). Contingency selection for power system stability analysis. Proceedings of the 2017 18th International Scientific Conference on Electric Power Engineering. https://doi.org/10.1109/EPE.2017.7967241

Shen, Z., Chiang, H. D., Tang, Y., Zhou, N. (2020). An online line switching methodology with lookahead capability to alleviate power system overloads based on a three-stage strategy. International Journal of Electrical Power and Energy Systems, 115. https://doi.org/10.1016/j.ijepes.2019.105500

Sun, D., Liu, x., Wang, Y., Yang, B. (2017). Robust Optimal Power Flow with Transmission Switching. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 416-421. https://doi.org/10.1109/IECON.2017.8216074

Tabatabaei Khorram, S. A., Fotuhi-Firuzabad, M., Safdarian, A. (2017). Optimal transmission switching as a remedial action to enhance power system reliability. 2016 Smart Grids Conference, SGC 2016, 7–12. https://doi.org/10.1109/SGC.2016.7882944

Yadav, A. K., Mahajan, V. (2019). Reliability Improvement of Power System Network with Optimal Transmission Switching. 2019 IEEE 1st International Conference on Energy, Systems and Information Processing, ICESIP 2019. https://doi.org/10.1109/ICESIP46348.2019.8938283

Yang, Z., Zhong, H., Xia, Q., Kang, C. (2015). Optimal Transmission Switching with Short-Circuit Current Limitation Constraints. IEEE Transactions on Power Systems, 31(2), 1278–1288. https://doi.org/10.1109/TPWRS.2015.2434961

Zhang, S., Liu, C. C., Gu, X., Wang, T. (2017). Optimal transmission line switching incorporating dynamic line ratings. 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGTEurope 2017 - Proceedings, 2018-January, 1–5. https://doi.org/10.1109/ISGTEurope.2017.8260139