Resistencia del Concreto Utilizando Adición Parcial de Ceniza de Madera Residual Respecto al Cemento

##plugins.themes.bootstrap3.article.main##

Juan Martín García Chumacero

Guillermo Gustavo Arriola Carrasco

Luigi Italo Villena Zapata

Socrates Pedro Muñoz Perez


Palabras clave:
Concrete, construction, compressive, flexural, wood ash Concreto, construcción, compresión, flexión, ceniza de madera

Resumen

La ceniza de madera es un residuo del proceso de quema de ladrillos artesanales que se produce en las zonas más pobres del Perú. Constituye un gran problema debido a que no existe una gestión de esta clase de residuos sólidos y contamina grandes sectores de la población. En ese sentido, surge la importancia de emplear elementos naturales sostenibles como las cenizas de madera que puedan aportar en el rendimiento del concreto. Es por ello que, esta investigación tuvo por objetivo evaluar la influencia de la incorporación de ceniza de madera en las propiedades mecánicas del concreto, con incorporaciones de 8%, 12% y 16%, en función al peso del cemento, para lo cual se prepararon especímenes cilíndricos y viguetas. Los resultados respecto al asentamiento y peso unitario se redujeron considerablemente por debajo de sus muestras patrones, a diferencia de la temperatura que tuvo aumentos que oscilaron entre los 3°C. Por otro lado, la mezcla combinada de 8% de ceniza de madera resultó ser la mayor resistencia a la compresión, llegando a 308,73 kg/cm2 la cual representa un incremento del 9,04% con respecto a la muestra patrón, en tanto, la resistencia a la flexión fue 45,32 kg/cm2 representando un incremento del 5,96% respecto a la muestra patrón. Se concluye que la adición de ceniza de madera mejora significativamente las propiedades mecánicas del concreto con una dosis óptima de 8%, el resultado contribuye a que sea técnicamente viable como adición en la elaboración de concreto sustentable en la construcción civil.

Descargas

Descargas

Los datos de descargas todavía no están disponibles.




Detalles del artículo

Biografía del autor/a

Guillermo Gustavo Arriola Carrasco, Universidad Señor de Sipán, Facultad de Ingeniería, Arquitectura y Urbanismo, Pimentel, Perú

        Ingeniero Civil de la Universidad Señor de Sipán, con estudios de Maestría en Ingeniería Vial en la Universidad Ricardo Palma de Perú. Es diseñador y consultor en proyectos de ingeniería civil con énfasis en hidrología e ingeniería hidráulica. Tiene experiencia en el cálculo y diseño de obras de arte para carreteras, puentes, obras hidráulicas, modelación hidrológica e hidráulica. Investigador y asesor de tesis en ingeniería hidráulica, hidrología y ramas afines para estudiantes de pregrado.

Citas

Alhazmi, H., Shah, S., & Basheer, M. (2021). Performance evaluation of road pavement green concrete: An application of advance decision-making approach before life cycle assessment. Coatings, 11(1), 1-18. https://doi.org/10.3390/coatings11010074

Arunkumar, K., Muthukannan, M., Kumar, A., Ganesh, A., & Devi, R. (2022a). Cleaner environment approach by the utilization of low calcium wood ash in geopolymer concrete. Applied Science and Engineering Progress, 15(1). https://doi.org/10.14416/j.asep.2021.06.005

Arunkumar, K., Muthukannan, M., Kumar, A., Ganesh, A., & Devi, R. (2022b). Hybrid fibre reinforced eco-friendly geopolymer concrete made with waste wood ash: A mechanical characterization study. Engineering and Applied Science Research, 49(2), 235-247. Retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/245630

Bikoko, T. (2021). A cameroonian study on mixing concrete with wood ashes: Effects of 0-30% wood ashes as a substitute of cement on the strength of concretes. Revue des Composites et des Materiaux Avances, 31(5), 275 - 282. https://doi.org/10.18280/rcma.310502

Caldas, L., Da, G., Pittau, F., Andreola, V., Habert, G., & Toledo, F. (2021). Environmental impact assessment of wood bio-concretes: Evaluation of the influence of different supplementary cementitious materials. Construction and Building Materials, 268. https://doi.org/10.1016/j.conbuildmat.2020.121146

Charita, V., Athira, S., Jittin, V., Bahurudeen, A., & Nanthagopalan, P. (2021). Use of different agro-waste ashes in concrete for effective upcycling of locally available resources. Construction and Building Materials, 285. https://doi.org/10.1016/j.conbuildmat.2021.122851

Choudhary, J., Kumar, B., & Singh, S. (2021). Assessment of engineering and environmental suitability of waste bituminous concrete containing waste biomass ash. International Journal of Pavement Research and Technology, 14(6), 751-763. https://doi.org/10.1007/s42947-020-0242-6

Chowdhury, M., Maniar & Suganya (2014). Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters. Construction and Building Materials, 6. https://doi.org/ 10.1016/j.jare.2014.08.006

Da Costa, T., Quinteiro, P., Arroja, L., & Dias, A. (2022). Environmental performance of different end-of-life alternatives of wood fly ash by a consequential perspective. Sustainable Materials and Technologies, 32. https://doi.org/10.1016/j.susmat.2022.e00411

Danraka, M., Aziz, F., Jaafar, M., Nasir, N., & Abdulrashid, S. (2019). Application of wood waste ash in concrete making: Revisited. Lecture Notes in Civil Engineering, 9, 69-78. https://doi.org/10.1007/978-981-10-8016-6_7

Dharmaraj, R. & SivaKumar, B. (2020). A feasibility study on cement with addition of prosopis juliflora ash as in concrete. Materials Today: Proceedings, 37(Part 2), 1212-1217. https://doi.org/ 10.1016/j.matpr.2020.06.374

De Souza, D., Antunes, L., & Sanchez, L. (2022). The evaluation of wood ash as a potential preventive measure against alkali-silica reaction induced expansion and deterioration. Journal of Cleaner Production, 358. https://doi.org/10.1016/j.jclepro.2022.131984

Elahi, M., Qazi, A., Yousaf, M., & Akmal, U. (2015). Application of wood ash in the production of concrete. Science International (Lahore), 27(2), 1277-1280. Retrieved from Web of Science

Fort, J., Sál, J., Zák, J., & Cerný, R. (2020). Assessment of wood-based fly ash as alternative cement replacement. Sustainability (Switzerland), 12(22), 1-16. https://doi.org/10.3390/su12229580

Gabrijel, I., Rukavina, M., & Štirmer, N. (2021). Influence of wood fly ash on concrete properties through filling effect mechanism. Materials, 14(23). https://doi.org/10.3390/ma14237164

Gaudreault, C., Lama, I., & Sain, D. (2020). Is the beneficial use of wood ash environmentally beneficial? A screening-level life cycle assessment and uncertainty analysis. Journal of Industrial Ecology, 24(6), 1300-1309. https://doi.org/10.1111/jiec.13019

Hamid, Z., & Rafiq, S. (2020). A comparative study on strength of concrete using wood ash as partial replacement of cement. IOP Conference Series: Materials Science and Engineering, 955(1). https://doi.org/ 10.1088/1757-899X/955/1/012043

Jura, J., & Ulewicz, M. (2021). Assessment of the possibility of using fly ash from biomass combustion for concrete. Materials, 14(21). https://doi.org/10.3390/ma14216708

Kanmani, S., Umesha, P., & Asha, P. (2021). Behaviour of steel fibre reinforced concrete with wood ash as partial replacement. IOP Conference Series: Earth and Environmental Science, 822(1). https://doi.org/10.1088/1755-1315/822/1/012053

Kannan, V., & Raja, P. (2021). Evaluation of the permeability of high strength concrete using metakaolin and wood ash as partial replacement for cement. SN Applied Sciences, 3(1). https://doi.org/10.1007/s42452-020-04024-y

Kett, I. (2009). Engineered concrete mix design and test methods, Second edition.Taylor & Francis Group.

Kumar, A., Muthukannan, M., Raja, A., & Suresh, K. (2022). Structural behaviour of green geopolymer concrete beams and columns made with waste wood ash a partial substitution binder. Materials Science Forum, 1048 MSF, 333-344. https://doi.org/10.4028/www.scientific.net/MSF.1048.333

Moretto, R. (2020). Comportamento mecânico do concreto compactado com rolo com adição da cinza de madeira. [Tese de graduação, Universidade Federal De Santa Catarina, Centro Tecnológico de Joinville]. UFSC. https://repositorio.ufsc.br/handle/123456789/218787

Owaid, H., Al-Rubaye, M., & Al-Baghdadi, H. (2021). Use of waste paper ash or wood ash as substitution to fly ash in production of geopolymer concrete. Scientific Review Engineering and Environmental Sciences, 30(3), 464-476. https://doi.org/10.22630/PNIKS.2021.30.3.39

Rahul-Rollakanti, C., Venkata-Siva C., Poloju, K., Juma Al Muharbi, N., & Venkat-Arun, Y. (2020). An experimental investigation on mechanical properties of concrete by partial replacement of cement with wood ash and fine sea shell powder. Materials Today: Proceedings, 43, 1325-1330. https://doi.org/ 10.1016/j.matpr.2020.09.164

Rodríguez-Álvaro, R., González-Fonteboa, B., Seara-Paz, S., & Tenza-Abril, A. (2022). Wood ash versus expanded clay aggregate as internal curing water reservoirs in high performance concrete. Materials and Structures/Materiaux et Constructions, 55(4). https://doi.org/10.1617/s11527-022-01963-3

Santek, B., Stirmer, N., Cerkovic, S., Carevic, I., & Kostanic, J. (2021). Pilot scale production of precast concrete elements with wood biomass ash. Materials, 14(21). https://doi.org/10.3390/ma14216578

Schmidt, W., Vilches, J., Zamora, D., Bustamante, M., Cofré, R. (2020). The effect on the compressive strength of concrete produced by the incorporation of boiler-calcined biomass ash into sand from the Maule river, Chile. IOP Conference Series: Earth and Environmental Science, 503(1). https://doi.org/10.1088/1755-1315/503/1/012075

Shabbar, R., Nedwell, P., & Wu, Z. (2017). Mechanical properties of lightweight aerated concrete with different aluminium powder content. MATEC Web of Conferences, 120, 1-7. https://doi.org/10.1051/matecconf/201712002010

Shaker, M., Bhalala, M., Kargar, Q., & Chang, B. (2020). Evaluation of alternative home-produced concrete strength with economic analysis. Sustainability (Switzerland), 12(17). https://doi.org/10.3390/SU12176746

Vijay, K., Hari, B., & Vidya, I. (2021). Effect of wood-ash as partial replacement to cement on performance of concrete. IOP Conference Series: Earth and Environmental Science, 796(1). https://doi.org/10.1088/1755-1315/796/1/012020

Vishnu, T., & Singh, K. (2021). A study on the suitability of solid waste materials in pavement construction: A review. International Journal of Pavement Research and Technology, 14(5), 625-637. https://doi.org/10.1007/s42947-020-0273-z

Xianggang, Z., Shuren, W., & Xiang, G. (2018). Mechanical properties of recycled aggregate concrete subjected to compression test. Journal of Engineering Science and Technology Review, 11(6), 20-25. https://doi.org/10.25103/jestr.116.04

Zhuge, Y., Duan, W., & Liu, Y. (2021). Utilization of wood waste ash in green concrete production. Sustainable Concrete Made with Ashes and Dust from Different Sources: Materials, Properties and Applications, 419-450. https://doi.org/10.1016/B978-0-12-824050-2.00007-3