Strategy Based on Multiple Objectives and Null Space for the Formation of Mobile Robots and Dynamic Obstacle Avoidance

##plugins.themes.bootstrap3.article.main##

Paulo Leica

Danilo Chavez

Andres Rosales

Flavio Roberti

Juan Marcos Toibero

Ricardo Carelli



Resumen

In this paper, a new algorithm for controlling mobile robot flexible formation based on multiple control objectives is presented. The strategy includes the use of null space for shape and posture control. The obstacle avoidance strategy is based on the definition of fictitious potential energy. The primary objective established is to shape control and obstacle avoidance, whereas the secondary objective includes the posture control and trajectory tracking of the robot formation. Stability analysis of the proposed control system is proven. Simulation results show the performance of the proposed controllers

En este trabajo se presenta un nuevo algoritmo para el control de formación flexible de robots móviles basado en múltiples objetivos de control.  La estrategia contempla el uso del espacio nulo de una matriz Jacobiana para el control de forma y postura. La estrategia de evasión de obstáculos está basada en la definición de energía potencial ficticia. Se establece como objetivo primario el control de forma y evasión de obstáculos, y como objetivo secundario el control de postura y seguimiento de trayectoria de la formación de los robots. Se analiza la estabilidad de los controladores implementados y se presentan los resultados obtenidos por simulación que muestran el correcto desempeño de los controladores.



Descargas

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Citas

G. Antonelli, F. Arrichiello, and S. Chiaverini The null-space-based behavioral control for mobile robots. In IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA),pages 15-20, 2005.

G. Antonelli, F. Arrichiello, and S. Chiaverini. The null-space-based behavioral control for autonomous robotic systems. Intelligent Service Robotics, 1(1):27-39, 2008.

G. Antonelli, F. Arrichiello, and S. Chiaverini. Experiments of formation control with multirobot systems using the null-space-based behavioral control. IEEE Transactions on Control Systems Technology, 17(5):1173-1182, 2009.

G. Antonelli and S. Chiaverini. Kinematic control of platoons of autonomous vehicles. IEEE Transactions on Robotics, 22(6):1285-1292, 2006.

T. Balch and R.C. Arkin. Behavior-based formation control for multirobot teams. IEEE Transactions on Robotics and Automation, 14(6):926-939, 1998.

T.D. Barfoot and C.M. Clark. Motion planning for formation of mobile robots. Robotics and Autonomous Systems, 46(2):65ËU78, 2004.

J. Chen, D. Sun, J. Yang, and H. Chen. LeaderË Ufollower formation control of multiple non-holonomic mobile robots incorporatinga receding-horizon scheme. The International Journal of Robotics Research,29(6):727-747, 2010.

L. Consolini, F. Morbidi, D. Prattichizzo, and M. Tosques. Leader-follower formation control of nonholonomic mobile robots with input constraints. Automatica, 40(5):1343-1349, 2008.

N. Hogan. Impedance control: An approach to manipulation. ASME Journal of Dynamic Systems, Measurement, and Control, 107:1-23, March 1985.

O. Khatib. Real time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research, 5(1):90-98, 1986.

Y. Koren and J. Borenstein. Potential field methods and their inherent limitations for mobile robot navigation. In Proceedings of the IEEE conference on Robotics and Automation, pages 1398-1404, Sacramento, California, April 1991.

J. Liu and J. Wu. Multiagent Robotic Systems. CRC Press, 2001.

I. Mas, O. Petrovic, and C. Kitts. Cluster space specification and control of a 3-robot mobile system. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation (ICRA'08), pages 3763-3768, 2008.

F. Michaud, D. Letourneau, M. Guilbert, and J.M. Valin. Dynamic robot formations using directional visual perception. In IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 3, pages 2740-2745, 2002.

H. G. Tanner G. J. Pappas and V. Kumar. Leader-to-formation stability. IEEE Transactions on Robotics and Automation, 20(3):443 - 455, June 2004.

V.T.L. Rampinelli, A.S. Brandao, F.N. Martins, M. Sarcinelli-Filho, and R. Carelli. A multi-layer control scheme for multirobot formations with obstacle avoidance. In International Conference on Advanced Robotics (ICAR), pages 1-6, 2009.

T. Suzuki, T. Sekine, T. Fujii, H. Asama, and I. Endo. Cooperative formation among multiple mobile robot teleoperation in inspection task. In Proceedings of the 39th IEEE Conference on Decision and Control, 2000., volume 1, pages 358 - 363, 2000.

C.R. Weisbin, J. Blitch, D. Lavery, E. Krotkov, C. Shoemaker, L. Matthies, and G. Rodriguez. Miniature robots for space and military issions. IEEE Robotics & Automation Magazine, pages 9 - 18, September 1999.

C. Cruz, "Control de Formacion de Robots Móviles", Tesis doctoral, cap. 2, diciembre 2006.