Estimación, Manejo y Control de la Contaminación No Puntual por Escorrentía Superficial Ganadera: Una Revisión de literatura
##plugins.themes.bootstrap3.article.main##
Resumen
Los nutrientes, como el nitrógeno y el fósforo generan, entre otros impactos, la eutrofización en los cuerpos de agua. Estos impactos son principalmente causados por actividades agrícolas como la ganadería, debido a la aplicación de fertilizantes y/o al estiércol de las vacas. Los nutrientes transportados por la escorrentía llegan a los cuerpos de agua y generan contaminación. Esta problemática ha sido abordada desde la década de los 60, no obstante, se ha logrado poco avance en este tema. Los avances están relacionados con la estimación del aporte de nutrientes de forma teórica y a través de simulaciones, debido a los altos costos que implica tomar datos en el campo. También se han realizado esfuerzos en la implementación de Buenas Prácticas de Gestión para el manejo de las fuentes no puntuales, pero existe poca evidencia de la eficiencia de cada una de estas prácticas. Por otro lado, pese a la falta de información científica necesaria para formular políticas, se ha demostrado que la vía normativa puede ser el mejor mecanismo para controlar la contaminación por fuentes no puntuales. En este artículo, se presenta una revisión de estos tres componentes luego del análisis bibliométrico, estableciendo lo que se conoce actualmente y las brechas de información. Primero, se abordan los avances en la estimación del aporte de las fuentes no puntuales, segundo se presentan las Buenas Prácticas de Gestión, y tercero, se exponen los avances en materia de políticas para el control de la contaminación no puntual.
Descargas
Descargas
Detalles del artículo
Citas
Abdelwahab, O. M. M., Ricci, G. F., De Girolamo, A. M., & Gentile, F. (2018). Modelling soil erosion in a Mediterranean watershed: Comparison between SWAT and AnnAGNPS models. Environmental Research, 166, 363-376. https://doi.org/10.1016/j.envres.2018.06.029
Amin, M. G. M., Karsten, H. D., Veith, T. L., Beegle, D. B., & Kleinman, P. J. (2018). Conservation dairy farming impact on water quality in a karst watershed in northeastern US. Agricultural Systems, 165, 187-196. Scopus. https://doi.org/10.1016/j.agsy.2018.06.010
Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large Area Hydrologic Modeling and Assessment Part I: Model Development1. JAWRA Journal of the American Water Resources Association, 34(1), 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
Bai, X., Shen, W., Wang, P., Chen, X., & He, Y. (2020). Response of Non-point Source Pollution Loads to Land Use Change under Different Precipitation Scenarios from a Future Perspective. Water Resources Management, 34(13), 3987-4002. https://doi.org/10.1007/s11269-020-02626-0
Ballantine, D. J., & Davies-Colley, R. J. (2013). Nitrogen, phosphorus and E. coli loads in the Sherry River, New Zealand. New Zealand Journal of Marine and Freshwater Research, 47(4), 529-547. https://doi.org/10.1080/00288330.2013.815640
Bird, S. C., & Drizo, A. (2009). Investigations on phosphorus recovery and reuse as soil amendment from electric arc furnace slag filters. Journal of Environmental Science and Health, Part A, 44(13), 1476-1483. https://doi.org/10.1080/10934520903217922
Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen. Ecological Applications, 8(3), 559-568. https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
Chen, D., Li, H., Zhang, W., Pueppke, S. G., Pang, J., & Diao, Y. (2020). Spatiotemporal Dynamics of Nitrogen Transport in the Qiandao Lake Basin, a Large Hilly Monsoon Basin of Southeastern China. Water, 12(4), Article 4. https://doi.org/10.3390/w12041075
Chen, H., Teng, Y., & Wang, J. (2013). Load estimation and source apportionment of nonpoint source nitrogen and phosphorus based on integrated application of SLURP model, ECM, and RUSLE: A case study in the Jinjiang River, China. Environmental Monitoring and Assessment, 185(2), 2009-2021. Scopus. https://doi.org/10.1007/s10661-012-2684-z
Chen, L., Wang, Y., Yang, N., Zhu, K., Yan, X., Bai, Z., Zhai, L., & Shen, Z. (2023). Improving crop-livestock integration in China using numerical experiments at catchment and regional scales. Agriculture, Ecosystems & Environment, 341, 108192. https://doi.org/10.1016/j.agee.2022.108192
Chen, X., Liu, X., Peng, W., Dong, F., Huang, Z., & Wang, R. (2017). Non-point source nitrogen and phosphorus assessment and management plan with an improved method in data-poor regions. Water (Switzerland), 10(1). Scopus. https://doi.org/10.3390/w10010017
Chen, X.-K., Liu, X.-B., Peng, W.-Q., Dong, F., Huang, Z.-H., Feng, S.-X., & Wang, R.-N. (2018). Estimation of and Control Strategies for Pollution Loads from Non-point Sources in the Chenghai Watershed. Huanjing Kexue/Environmental Science, 39(1), 77-88. Scopus. https://doi.org/10.13227/j.hjkx.201705061
De Lima Barros, A. M., Do Carmo Sobral, M., & Gunkel, G. (2013). Modelling of point and diffuse pollution: Application of the Moneris model in the Ipojuca river basin, Pernambuco State, Brazil. Water Science and Technology, 68(2), 357-365. Scopus. https://doi.org/10.2166/wst.2013.086
Ding, X., Shen, Z., Hong, Q., Yang, Z., Wu, X., & Liu, R. (2010). Development and test of the Export Coefficient Model in the Upper Reach of the Yangtze River. Journal of Hydrology, 383(3), 233-244. https://doi.org/10.1016/j.jhydrol.2009.12.039
Doole, G. J. (2012). Cost-effective policies for improving water quality by reducing nitrate emissions from diverse dairy farms: An abatement-cost perspective. Agricultural Water Management, 104, 10-20. https://doi.org/10.1016/j.agwat.2011.11.007
Drizo, A., Johnston, C., & Guðmundsson, J. (2022). An Inventory of Good Management Practices for Nutrient Reduction, Recycling and Recovery from Agricultural Runoff in Europe’s Northern Periphery and Arctic Region. Water, 14(13), Article 13. https://doi.org/10.3390/w14132132
Drizo, A., & Picard, H. (2012). Systems and methods for removing phosphorous from wastewater (United States Patent US20120048806A1). https://patents.google.com/patent/US20120048806A1/en/und
EPA. (2013). Introducción a la Ley de Agua Limpia. United Satate Environmental Protection Agency. https://cfpub.epa.gov/watertrain/pdf/modules/Introduccion_a_la_Ley_de_Aqua_Limpia.pdf
Gao, W., Dai, A., Wu, J., Li, Y., Hou, J., Wang, X., & Li, K. (2023). Hydrological status of the Dagu River Basin and management suggestions based on soil and water assessment tool multi-station calibration. Applied Water Science, 13(4), 97. https://doi.org/10.1007/s13201-023-01900-x
Geng, R., & Sharpley, A. N. (2019). A novel spatial optimization model for achieve the trad-offs placement of best management practices for agricultural non-point source pollution control at multi-spatial scales. Journal of Cleaner Production, 234, 1023-1032. https://doi.org/10.1016/j.jclepro.2019.06.277
Guo, Y., Wang, X., Melching, C., & Nan, Z. (2022). Identification method and application of critical load contribution areas based on river retention effect. Journal of Environmental Management, 305, 114314. https://doi.org/10.1016/j.jenvman.2021.114314
Hou, L., Zhou, Z., Wang, R., Li, J., Dong, F., & Liu, J. (2022). Research on the Non-Point Source Pollution Characteristics of Important Drinking Water Sources. Water, 14(2), Article 2. https://doi.org/10.3390/w14020211
JiaKe, L., HuaiEn, L., & YaJiao, L. (2009). Development of study on AnnAGNPS model and its application. Journal of Northwest A & F University - Natural Science Edition, 37(2), 225-234.
Johnes, P. J. (1996). Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: The export coefficient modelling approach. Journal of Hydrology, 183(3), 323-349. https://doi.org/10.1016/0022-1694(95)02951-6
Kanter, D. R., Musumba, M., Wood, S. L. R., Palm, C., Antle, J., Balvanera, P., Dale, V. H., Havlik, P., Kline, K. L., Scholes, R. J., Thornton, P., Tittonell, P., & Andelman, S. (2018). Evaluating agricultural trade-offs in the age of sustainable development. Agricultural Systems, 163, 73-88. https://doi.org/10.1016/j.agsy.2016.09.010
Li, A.-L., Haitao, C., Yuanyuan, L., Qiu, L., & Wenchuan, W. (2020). Simulation of nitrogen pollution in the Shanxi Reservoir watershed based on SWAT model. Nature Environment and Pollution Technology, 19(3), 1265-1272. Scopus. https://doi.org/10.46488/NEPT.2020.v19i03.042
Liu, X., Li, D., Zhang, H., Cai, S., Li, X., & Ao, T. (2015). Research on Nonpoint Source Pollution Assessment Method in Data Sparse Regions: A Case Study of Xichong River Basin, China. ADVANCES IN METEOROLOGY, 2015. https://doi.org/10.1155/2015/519671
Logan, T. J. (1993). Agricultural best management practices for water pollution control: Current issues. Agriculture, Ecosystems & Environment, 46(1), 223-231. https://doi.org/10.1016/0167-8809(93)90026-L
Mohamoud, Y. M., & Prieto, L. M. (2012). Effect of Temporal and Spatial Rainfall Resolution on HSPF Predictive Performance and Parameter Estimation. Journal of Hydrologic Engineering, 17(3), 377-388. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000457
Niu, S., Guerra, H. B., Chen, Y., Park, K., & Kim, Y. (2013). Performance of a vertical subsurface flow (VSF) wetland treatment system using woodchips to treat livestock stormwater. Environmental Sciences: Processes and Impacts, 15(8), 1553-1561. Scopus. https://doi.org/10.1039/c3em00107e
Qiu, J., Shen, Z., Chen, L., & Hou, X. (2019). Quantifying effects of conservation practices on non-point source pollution in the Miyun Reservoir Watershed, China. Environmental Monitoring and Assessment, 191(9), 582. https://doi.org/10.1007/s10661-019-7747-y
Roygard, J. K. F., McArthur, K. J., & Clark, M. E. (2012). Diffuse contributions dominate over point sources of soluble nutrients in two sub-catchments of the Manawatu River, New Zealand. New Zealand Journal of Marine and Freshwater Research, 46(2), 219-241. https://doi.org/10.1080/00288330.2011.632425
Sharara, M., Sampat, A., Good, L., Smith, A., Porter, P., Zavala, V., Larson, R., & Runge, T. (2017). Spatially explicit methodology for coordinated manure management in shared watersheds. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 192, 48-56. https://doi.org/10.1016/j.jenvman.2017.01.033
Shen, Z., Liao, Q., Hong, Q., & Gong, Y. (2012). An overview of research on agricultural non-point source pollution modelling in China. Separation and Purification Technology, 84, 104-111. https://doi.org/10.1016/j.seppur.2011.01.018
Skidmore, M., Andarge, T., & Foltz, J. (2023). Effectiveness of local regulations on nonpoint source pollution: Evidence from Wisconsin dairy farms. American Journal of Agricultural Economics, n/a(n/a). https://doi.org/10.1111/ajae.12388
Soranno, P. A., Hubler, S. L., Carpenter, S. R., & Lathrop, R. C. (1996). Phosphorus Loads to Surface Waters: A Simple Model to Account for Spatial Pattern of Land Use. Ecological Applications, 6(3), 865-878. https://doi.org/10.2307/2269490
Stackpoole, S. M., Stets, E. G., & Sprague, L. A. (2019). Variable impacts of contemporary versus legacy agricultural phosphorus on US river water quality. Proceedings of the National Academy of Sciences, 116(41), 20562-20567. https://doi.org/10.1073/pnas.1903226116
Sweeten, J. M., & Reddell, D. L. (1976). NONPOINT SOURCES: STATE-OF-THE-ART OVERVIEW. Paper - American Society of Agricultural Engineers, var pagings.
Tanik, A., Ozalp, D., & Seker, D. Z. (2013). Practical estimation and distribution of diffuse pollutants arising from a watershed in Turkey. International Journal of Environmental Science and Technology, 10(2), 221-230. Scopus. https://doi.org/10.1007/s13762-012-0140-9
Tong, X., Zhou, Y., Liu, J., Qiu, P., & Shao, Y. (2022). Non-point source pollution loads estimation in Three Gorges Reservoir Area based on improved observation experiment and export coefficient model. Water Science and Technology, 85(1), 27-38. https://doi.org/10.2166/wst.2021.508
Uribe, N. (2005). Conceptos basicos y guia rapida para el usuario. https://swat.tamu.edu/media/46967/swat2005-tutorial-spanish.pdf
US EPA, O. (2015, febrero 19). Hydrological Simulation Program—FORTRAN (HSPF) [Data and Tools]. https://www.epa.gov/ceam/hydrological-simulation-program-fortran-hspf
Uusitalo, R., Ylivainio, K., Hyväluoma, J., Rasa, K., Kaseva, J., Nylund, P., Pietola, L., & Turtola, E. (2012). The effects of gypsum on the transfer of phosphorus and other nutrients through clay soil monoliths. Agricultural and Food Science, 21(3), Article 3. https://doi.org/10.23986/afsci.4855
Vanotti, M. B., Szogi, A. A., & Fetterman, L. M. (2010). Wastewater treatment system with simultaneous separation of phosphorus and manure solids (United States Patent US7674379B2). https://patents.google.com/patent/US7674379B2/en
Vollenweider, U. E. N. C. for E. (1968). Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication [WEB SITE]. https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/37262
Wang, H., Wu, Z., & Hu, C. (2015). A Comprehensive Study of the Effect of Input Data on Hydrology and non-point Source Pollution Modeling. Water Resources Management, 29(5), 1505-1521. https://doi.org/10.1007/s11269-014-0890-x
Wang, M., Chen, L., Wu, L., Zhang, L., Xie, H., & Shen, Z. (2022). Review of Nonpoint Source Pollution Models: Current Status and Future Direction. Water, 14(20), Article 20. https://doi.org/10.3390/w14203217
White, M., Harmel, D., Yen, H., Arnold, J., Gambone, M., & Haney, R. (2015). Development of Sediment and Nutrient Export Coefficients for U.S. Ecoregions. JAWRA Journal of the American Water Resources Association, 51(3), 758-775. https://doi.org/10.1111/jawr.12270
Wu, L., Long, T.-Y., & Cooper, W. J. (2012). Simulation of spatial and temporal distribution on dissolved non-point source nitrogen and phosphorus load in Jialing River Watershed, China. Environmental Earth Sciences, 65(6), 1795-1806. Scopus. https://doi.org/10.1007/s12665-011-1159-9
Wu, M., Tang, X., Li, Q., Yang, W., Jin, F., Tang, M., & Scholz, M. (2013). Review of ecological engineering solutions for rural non-point source water pollution control in Hubei Province, China. Water, Air, and Soil Pollution, 224(5). Scopus. https://doi.org/10.1007/s11270-013-1561-x
Xie, H., & Lian, Y. (2013). Uncertainty-based evaluation and comparison of SWAT and HSPF applications to the Illinois River Basin. Journal of Hydrology, 481, 119-131. https://doi.org/10.1016/j.jhydrol.2012.12.027
Xue, J., Wang, Q., & Zhang, M. (2022). A review of non-point source water pollution modeling for the urban–rural transitional areas of China: Research status and prospect. Science of The Total Environment, 826, 154146. https://doi.org/10.1016/j.scitotenv.2022.154146
Yang, J., Wang, Y., Fang, S., Qiang, Y., Liang, J., Yang, G., & Feng, Y. (2020). Evaluation of livestock pollution and its effects on a water source protection area in China. Environmental Science and Pollution Research, 27(15), 18632-18639. https://doi.org/10.1007/s11356-019-06485-0
Zhang, T., Yang, Y., Ni, J., & Xie, D. (2020). Best management practices for agricultural non-point source pollution in a small watershed based on the AnnAGNPS model. Soil Use and Management, 36(1), 45-57. https://doi.org/10.1111/sum.12535
Zhang, Y., Griffith, B., Granger, S., Sint, H., & Collins, A. L. (2022). Tackling unintended consequences of grazing livestock farming: Multi-scale assessment of co-benefits and trade-offs for water pollution mitigation scenarios. Journal of Cleaner Production, 336, 130449. https://doi.org/10.1016/j.jclepro.2022.130449
Zhao, C., Li, M., Wang, X., Liu, B., Pan, X., & Fang, H. (2022). Improving the accuracy of nonpoint-source pollution estimates in inland waters with coupled satellite-UAV data. Water Research, 225. Scopus. https://doi.org/10.1016/j.watres.2022.119208