A Systematic Literature Review about Sensors Systems and Applications for Livestock Vital Signs Monitoring
##plugins.themes.bootstrap3.article.main##
Resumen
El uso de las Tecnologías de la Información y la Comunicación (TIC) en la ganadería no es nuevo; las aplicaciones en este campo abarcan desde la simple identificación animal hasta sistemas completos de trazabilidad. La monitorización de signos vitales del ganado es uno de los aspectos de la ganadería en el que se aplican las TIC. Este artículo presenta una revisión sistemática de la literatura de propuestas para la monitorización de signos vitales en diferentes tipos de ganado. Para ello se ha aplicado la metodología PRISMA, con sus tres fases: Planificación, Ejecución y Reporte. Se han considerado artículos de revistas y congresos, entre 2017 y 2023. La principal tendencia de las publicaciones y productos comerciales analizados es el monitoreo de largo alcance de signos como movimiento, posición geográfica, temperatura corporal, o frecuencia cardiaca. Por lo tanto, existen oportunidades para desarrollar dispositivos o productos que monitoreen otros signos vitales, como la presión arterial o la saturación de oxígeno en la sangre.
Descargas
Descargas
Detalles del artículo
Citas
Afimilk. (2022). Cow Monitoring Solution. Retrieved September 27, 2022, from https://www.afimilk.com/cow-monitoring/
Allflex Livestock Intelligence. (2024). Livestock Monitoring. Retrieved September 27, 2022, from https://www.allflex.global/na/product_cat/livestock-monitoring/
Anderson, V., Leung, A. C. W., Mehdipoor, H., Janicke, B., Milosevic, D., Oliveira, A., Manavvi, S., Kabano, P., Dzyuban, Y., Aguilar, R., Agan, P. N., Kunda, J. J., Garcia-Chapeton, G., de França Carvalho Fonsêca, V., Nascimento, S. T., & Zurita-Milla, R. (2021). Technological opportunities for sensing of the health effects of weather and climate change: a state-of-the-art-review. International Journal of Biometeorology, 65(6), 779–803. https://doi.org/10.1007/s00484-020-02063-z
CowManager. (2024). Ahead of the herd togheter. Retrieved September 27, 2022, from https://www.cowmanager.com/
Dißmann, L., Heinicke, J., Jensen, K. C., Amon, T., & Hoffmann, G. (2022). How should the respiration rate be counted in cattle? Veterinary Research Communications, 2017. https://doi.org/10.1007/s11259-022-09984-7
Dong, Y., Codling, J. R., Rohrer, G., Miles, J., Sharma, S., Brown-Brandl, T., Zhang, P., & Noh, H. Y. (2022). PigV2: Monitoring Pig Vital Signs through Ground Vibrations Induced by Heartbeat and Respiration. Proceedings of the Twentieth ACM Conference on Embedded Networked Sensor Systems, 1102–1108. https://doi.org/10.1145/3560905.3568416
Dos Reis, B. R., Easton, Z., White, R. R., & Fuka, D. (2021). A LoRa sensor network for monitoring pastured livestock location and activity. Translational Animal Science, 5(2), 1–9. https://doi.org/10.1093/tas/txab010
Fuentes, S., Gonzalez Viejo, C., Chauhan, S. S., Joy, A., Tongson, E., & Dunshea, F. R. (2020). Non-Invasive Sheep Biometrics Obtained by Computer Vision Algorithms and Machine Learning Modeling Using Integrated Visible/Infrared Thermal Cameras. Sensors, 20(21), 6334. https://doi.org/10.3390/s20216334
García-Márquez, L. J., Pérez-González, J., Ruíz-Ramírez, J., & Macedo-Barragán, R. (2023). Causas y factores de riesgo asociados a la mortalidad pre-destete de terneros en hatos bovinos de doble propósito en Colima, México. Revista de Investigaciones Veterinarias Del Perú, 34(1), e23243. https://doi.org/10.15381/rivep.v34i1.23243
Germani, L., Mecarelli, V., Baruffa, G., Rugini, L., & Frescura, F. (2019). An IoT Architecture for Continuous Livestock Monitoring Using LoRa LPWAN. Electronics, 8(12), 1435. https://doi.org/10.3390/electronics8121435
Hao, Y., Li, J., Wang, W., & Lin, Q. (2019). An Animal Respiration Monitoring System Based on Channel State Information of Wi-Fi Network. Proceedings of the 2019 7th International Conference on Information Technology: IoT and Smart City, 283–289. https://doi.org/10.1145/3377170.3377196
Ibarra, M., Campos, M., Ibarra, C., Gladys, U., Huera, D., Gutiérrez, M., Chamorro, A., & Núñez, L. (2023). Financial Losses Associated with Bovine Brucellosis (Brucella abortus) in Carchi-Ecuador. Open Journal of Animal Sciences, 13(02), 205–216. https://doi.org/10.4236/ojas.2023.132015
Icerobotics. (n.d.). CowAlert. N/D. Retrieved September 27, 2022, from https://www.icerobotics.com/cowalert/
INEC (Instituto Nacional de Estadísticas y Censos). (2020). Censo Nacional Agropecuario. https://www.ecuadorencifras.gob.ec/censo-nacional-agropecuario/
Ixorigue. (n.d.). Collares GPS para monitorización de ganado. Retrieved September 27, 2022, from https://ixorigue.com/
Joshitha, C., Kanakaraja, P., Bhavani, M. D., Raman, Y. N. V., & Sravani, T. (2021). LoRaWAN based Cattle Monitoring Smart System. 2021 7th International Conference on Electrical Energy Systems (ICEES), 548–552. https://doi.org/10.1109/ICEES51510.2021.9383749
Kanz, P., Gusterer, E., Krieger, S., Schweinzer, V., Süss, D., Drillich, M., & Iwersen, M. (2020). Pulsoximetric monitoring of fetal arterial oxygen saturation and fetal pulse at stage II of labor to predict acidosis in newborn Holstein Friesian calves. Theriogenology, 142, 303–309. https://doi.org/10.1016/j.theriogenology.2019.10.027
Li, Q., Liu, Z., & Xiao, J. (2018). A Data Collection Collar for Vital Signs of Cows on the Grassland Based on LoRa. 2018 IEEE 15th International Conference on E-Business Engineering (ICEBE), 213–217. https://doi.org/10.1109/ICEBE.2018.00041
Luo, J., Ito, A., Sasaki, A., Hasegawa, M., Ashibe, S., Nagao, Y., Hiramatsu, Y., Torii, K., & Aoki, T. (2020). Sensor Network for Monitoring Livestock Behaviour. 2020 IEEE SENSORS, 2020-Octob, 1–4. https://doi.org/10.1109/SENSORS47125.2020.9278693
acías-Rioseco, M., Silveira, C., Fraga, M., Casaux, L., Cabrera, A., Francia, M. E., Robello, C., Maya, L., Zarantonelli, L., Suanes, A., Colina, R., Buschiazzo, A., Giannitti, F., & Riet-Correa, F. (2020). Causes of abortion in dairy cows in Uruguay. Pesquisa Veterinária Brasileira, 40(5), 325–332. https://doi.org/10.1590/1678-5150-pvb-6550
Miller, M., Byfield, R., Crosby, M., Schiltz, P., Johnson, P. J., & Lin, J. (2023). A wearable photoplethysmography sensor for non-invasive equine heart rate monitoring. Smart Agricultural Technology, 5, 100264. https://doi.org/10.1016/j.atech.2023.100264
Moonsyst. (2024). Moonsyst cattle monitoring. Retrieved September 27, 2022, from https://moonsyst.com/home
Munoz, C., Huircan, J., Huenupan, F., & Cachana, P. (2020). PTZ camera tuning for real time monitoring of cows in grazing fields. 2020 IEEE 11th Latin American Symposium on Circuits & Systems (LASCAS), 1–4. https://doi.org/10.1109/LASCAS45839.2020.9068964
Natori, T., Oishi, Y., Tsuichihara, S., Takemura, H., & Aikawa, N. (2021). Development of activity collecting system for grazing cattle in vast land. Electronics and Communications in Japan, 104(2), 1–9. https://doi.org/10.1002/ecj.12314
Neethirajan, S. (2020). Transforming the Adaptation Physiology of Farm Animals through Sensors. Animals, 10(9), 1512. https://doi.org/10.3390/ani10091512
Nie, L., Berckmans, D., Wang, C., & Li, B. (2020). Is Continuous Heart Rate Monitoring of Livestock a Dream or Is It Realistic? A Review. Sensors, 20(8), 2291. https://doi.org/10.3390/s20082291
Nigussie, E., Olwal, T. O., Lemma, A., Mekuria, F., & Peterson, B. (2020). IoT Architecture for Enhancing Rural Societal Services in Sub-Saharan Africa. Procedia Computer Science, 177, 338–344. https://doi.org/10.1016/j.procs.2020.10.045
Nootyaskool, S., & Ounsrimung, P. (2020). Smart Collar Design to Predict Cow Behavior. 2020 17th International Joint Conference on Computer Science and Software Engineering (JCSSE), 92–97. https://doi.org/10.1109/JCSSE49651.2020.9268342
Ojo, M. O., Viola, I., Baratta, M., & Giordano, S. (2022). Practical Experiences of a Smart Livestock Location Monitoring System Leveraging GNSS, LoRaWAN and Cloud Services. Sensors, 22(1), 273. https://doi.org/10.3390/s22010273
Orihuela, A. (2021). Review: Management of livestock behavior to improve welfare and production. Animal, 15, 100290. https://doi.org/10.1016/j.animal.2021.100290
Prasad, A., & Kothari, N. (2022). Cow products: boon to human health and food security. Tropical Animal Health and Production, 54(1), 12. https://doi.org/10.1007/s11250-021-03014-5
Quispe Bonilla, M., Poma Gutiérrez, A., Serrano-Arriezu, L., Led Ramos, S., & Quispe Peña, E. (2019). Diseño, desarrollo y evaluación preliminar de un novedoso monitor de signos vitales llevable para vacunos. Revista de Investigaciones Veterinarias Del Perú, 30(1), 74–87. https://doi.org/10.15381/rivep.v30i1.15684
Reigones, A. R., & Gaspar, P. D. (2021). Real-Time Vital Signs Monitoring System Towards Livestock Health Furtherance. 2021 6th International Conference on Inventive Computation Technologies (ICICT), 753–758. https://doi.org/10.1109/ICICT50816.2021.9358658
Sinclair, M., Fryer, C., & Phillips, C. (2019). The Benefits of Improving Animal Welfare from the Perspective of Livestock Stakeholders across Asia. Animals, 9(4), 123. https://doi.org/10.3390/ani9040123
Tsenkov, Y., & Tsenev, V. (2017). Continuous analysis of free-roaming animals’ behavior with ear-tag device. 2017 40th International Spring Seminar on Electronics Technology (ISSE), 1–5. https://doi.org/10.1109/ISSE.2017.8000993
Tuan, S.-A., Rustia, D. J. A., Hsu, J.-T., & Lin, T.-T. (2022). Frequency modulated continuous wave radar-based system for monitoring dairy cow respiration rate. Computers and Electronics in Agriculture, 196, 106913. https://doi.org/10.1016/j.compag.2022.106913
van der Kooij, K. M., & Naber, M. (2019). An open-source remote heart rate imaging method with practical apparatus and algorithms. Behavior Research Methods, 51(5), 2106–2119. https://doi.org/10.3758/s13428-019-01256-8
Veintimilla, J., Huerta, M., & Castillo-Velazquez, J.-I. (2022). Development of System for Monitoring and Geopositioning for Cattle Using IoT. 2022 IEEE ANDESCON, 5, 1–6. https://doi.org/10.1109/ANDESCON56260.2022.9989658
Vergara Villegas, O. O., Nandayapa, M., Sossa Azuela, J. H., Cossio Franco, E. G., & Rubin Linares, G. T. (2021). Artificial Intelligence for Industry 4.0 in Iberoamerica. Computación y Sistemas, 25(4), 761–773. https://doi.org/10.13053/cys-25-4-4056
Wan, H., Zhuang, L., Pan, Y., Gao, F., Tu, J., Zhang, B., & Wang, P. (2020). Biomedical sensors. In David Dagan Feng (Ed.), Biomedical Information Technology (Second, pp. 51–79). Elsevier. https://doi.org/10.1016/B978-0-12-816034-3.00002-X
Xia, L., Chunxia, S., & Ming, T. (2020). Design and Implementation of Intelligent Ear Tag for Dairy Cows in Farms. Proceedings of the 2020 9th International Conference on Software and Computer Applications, 297–301. https://doi.org/10.1145/3384544.3384574
Yang, Z., Chen, P., Li, Z., Wu, Y., He, Y., Wang, K., Chen, X., Chen, Y., & Xu, Z. (2022). Intelligent livestock nameplate based on STM32. Proceedings of the 2022 4th International Conference on Robotics, Intelligent Control and Artificial Intelligence, 907–912. https://doi.org/10.1145/3584376.3584538
Zhang, M., Feng, H., Luo, H., Li, Z., & Zhang, X. (2020). Comfort and health evaluation of live mutton sheep during the transportation based on wearable multi-sensor system. Computers and Electronics in Agriculture, 176(May), 105632. https://doi.org/10.1016/j.compag.2020.105632
Zoetis. (2021). Hert Monitoring Software SMARTBOW. Retrieved September 27, 2022, from https://www.smartbow.com/en/