Sistemas de ecuaciones diferenciales nolineales indefinidas
##plugins.themes.bootstrap3.article.main##
Resumen
Resumen.-Â En el presente trabajo se demuestra la existencia de al menos una solución para sistemas de ecuaciones diferenciales no lineales con no linealidades indefinidas, de modo más preciso, el sistema contiene al menos una ecuación del tipo Hill.
Abstract.-Â In this study we proof the existence of at least one solution for systems of nonlinear differential equations with indefinite nonlinearities; more precisely this system contains at least one Hill-type equation.
Descargas
Descargas
Detalles del artículo
Citas
S. Alama, M. Del Pino, "Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking", Ann. Inst. H. Poincar´e Anal. Non Lin´eaire, 13, 95-115, 1996.
S. Alama, G. Tarantello, "On semilinear elliptic equations with indefinite nonlinearities", Cal. Var., 1, 439-475, 1993.
S. Alama, G. Tarantello, "Elliptic Problems with Nonlinearities Indefinite in Sign", Journal of Functional Analysis, 141, 159-215, 1996.
A. Ambrosetti, "Critical Points and Nonlinear Variational Problems", Cours de la Chaire Lagrange, Memoire (nouvelle s´erie) No 49, Suppl´ement auulletin de la Société Math´ematique de France, 120, 1-
, 1992.
A. Ambrosetti, M. Badiale, "The dual variational principle and elliptic problems with discontinuous nonlinearities", J. Math. Anal. Appl., 140, 363-373, 1989.
A. Ambrosetti, M. Calahorrano, F. Dobarro, "Global
branching for discontinuos problems", Comment Math. Univ. Carolina, 31, 213-222, 1990.
A. Ambrosetti, K. C. Chang, I. Ekeland, "Nonlinear Functional Analysis and applications to differential equations",World Scientific, (1998).
A. Ambrosetti, A. Malchiodi, "Nonlinear Analysis and Semilinear elliptic Problems", Cambridge University Press, 2007.
A. Ambrosetti, M. Struwe, "Existence of steady vortex
rings in an ideal fluid", Arch. Rat. Mech. Anal., 108, 97-09, 1989.
A. Anane, O. Chakrone, M. Moussa, "Spectrum of one dimensional p-Laplacian Operator with indefinite weight", EJQTDE, 17, 1-11, 2002.
D. Arcoya, M. Calahorrano, "Some Discontinuos Problems with a Quasilinear Operator", Journal of Mathematical Analysis and Applications, 187, 1059-1072, 1994.
H. Berestycki, I. Capuzzo-Dolcetta, L. Nirenberg, "Variational methods for indefinite superlinear homogeneous elliptic problems", NoDEA, 2, 553-572,1995.
M. Calahorrano, "Existencia de soluciones positivas
para problemas no lineales con discontinuidades indefinidas", Boletín de la Sociedad Matemática Mexicana, 13, 95-101, 2007.
M. Calahorrano, "Existence and multiplicity of solutions for elliptic problems with indefinite discontinuous nonlinearities", PAMM, Proc. Appl. Math. Mech., 7, 1040303-1040304, 2007.
M. Calahorrano, J. Mayorga, "Un problema discontinuo con operador cuasilineal", Revista Colombiana de Matemáticas, 35, 1-11, 2001
A. Castro, "Non negative solutions for nonpositone
problems", Lect. College on Variational Methods, ICTP, Trieste, 1-12, 1988.
A. Castro, A. Kurepa, "Energy analysis of a Nonlinear singular differential equation and applications", Rev. Colombiana Mat., 21, 155-166, 1987.
A. Castro, C. Maya, R. Shivaji, "Nonlinear eigenvalue
problems with semipositone structure", EJDE, Conf. 05, 33-49, 2000.
A. Castro, R. Shivaji, "Nonnegative solutions for
a class of nonpositone problems", Proc. Roy. Soc. Edinburgh Sect. A, 108, 291-302, 1988.
A. Castro, R. Shivaji, "Nonnegative solutions for a
class of radially symmetric nonpositone problems", Proc. Amer. Math. Soc., 106, 735-740, 1989.
K. C. Chang, M.Y. Jiang, "Dirichlet problem with indefinite nonlinearities", Calculus of Variations, 20, 257-282, 2004.
M. Cuesta, "Eigenvalue problems for the p- Laplacian with indefinite weights", Electronic Journal
of Differential Equations, 33, 1-9, 2001.
D. G. De Figueiredo, "Semilinear Elliptic Systems", School on Differential Equations, ICTP, Trieste, 2006.
D. G. de Figueiredo, J. P. Gossez, P. Ubilla, "Local
superlinearity and sublinearity for indefinite semilinear
elliptic problems", Journal of Functional Analysis, 199, 452 - 467, 2003.
M. Garc´ıa-Huidobro, R. Man´asevich, C. Yarur, "Some results about positive solutions of a nonlinear equation with a weighted Laplacian", Bol. Soc. Parana.
Mat., 22, 57-65, 2004.
R. Man´asevich, F. Zanolin, "Time-mappings and multiplicity of solutions for the one-dimensional p-Laplacian", Nonlinear Anal., 21, 269-291, 1993.
D. Papini, F. Zanolin, "A topological approach to superlinear indefinite boundary value problems", Topol. Methods Nonlinear Anal., 15, 203-233, 2000.
D. Papini, F. Zanolin, "Differential equations with indefinite weight: boundary value problems and qualitative properties of the solutions", Rend. Sem. Mat. Univ. Pol. Torino, 60, 265-296, 2002.
D. Papini, F. Zanolin, "Periodic points and chaoticlike dynamics of planar maps associated to nonlinear Hill’s equations with indefinite weight", Georgian Mathematical Journal, 9, 339-366, 2002.
C. Stuart, "Differential equations with discontinuous
nonlinearities", Arch. Rat. Mech. Anal., 63, 59-75, 1976.
C. Stuart, J. F. Toland, "A variational method for boundary value problems with discontinuous nonlinearities", J. London Math. Soc., 21, 319-328, 1980.