Review of the Investigation of Innovative Propulsion System Architectures for Aircraft

Autores/as

  • Esteban Valencia Escuela Politecnica Nacional Facultad de Ingenieria Mecanica
  • Panagiotis Laskaridis Cranfield University Power and Propulsion Department MK430AL UK
  • Riti Singh Cranfield University Power and Propulsion Department MK430AL UK
  • Chengyuan Liu
  • Edgar Cando Escuela Politecnica Nacional Ingenieria Mecanica Ecuador
  • Victor Hidalgo TSINGHUA UNIVERSITY State key laboratory China

Resumen

Resumen: Los beneficios potenciales que representa la aviación en los campos: económico, de seguridad y de desarrollotecnológico de un país, han motivado a países como Ecuador a fomentar el crecimento de la aeronáutica en los últimosaños. Lamanufactura de vehículos no tripulados y satélites, por ejemplo, han significado importantes pasos en la evoluciónde esta rama. En este ámbito, la presente investigación contribuye al estudio de sistemas de propulsión innovadoresde alta eficiencia, que permitan la disminución del consumo de combustible, emisiones y ruido. El efecto de estas variablesen el medio ambiente ha sido estudiado de una manera extensa. Por tal razón, es conocido que el crecimiento de laaviación llevará consigo a una alteracion a nivel global del ecosistema. Debido a ésto, grandes esfuerzos en investigaciónhan sido enfocados a los sistemas de propulsión y fuselaje alternativos, que permitan el desarrollo sustentable dela aviación. El presente trabajo compila la investigación sobre nuevas arquitecturas de sistemas de propulsión, los cualesexhiben potenciales beneficios en las anteriormente mencionadas métricas. Uno de estos novedosos conceptos es elavión NASA N3-X, el cual en éste estudio ha sido considerado como estructura base de propulsión sobre la cual diferentesdiseños conceptuales fueron analizados. En éste concepto resaltan dos aspectos importantes en el mejoramiento delrendimiento de las aeronaves: la re-energización de la capa limite (BLI) y la propulsión distribuida. Desde el punto devista aerodinámico, éstas tecnologias presentan como problemas principales, la distorsión tridimensional inducida porBLI y las pérdidas de presión producidas en los conductos de admisión de los propulsores. Referente a estos problemas,la metodología desarrollada permite la implementación de estos en el análisis del sistema, utilizando diferentes nivelesde fidelidad y diseños de propulsión. En resumen, éste trabajo pretende dar una idea de la labor llevada a cabo en elámbito de los diseños innovadores de propulsión para aviones. Lo cual ha sido considerado especialmente para brindaruna idea global de la problemática y el enfoque seleccionado para estudiar este complejo sistema. En éste sentido,tambien se destacan los principales desafíos, que se deben abordar con el fin de hacer viables estos conceptos.

 

Abstract: The potential benefits of aviation in the economics, safety and technological development of a country, havemotivated countries like Ecuador to create incentives that enable the development of the research in the aerospace field.Some examples are the built in house UAV’s and satellites, which represented important steps in the development of theEcuadorian aerospace research. In this context, the present work contributes with the study of innovative propulsionarchitectures, which present high overall efficiency and therefore contribute to the reduction of fuel burn and emissions.These metrics have been chosen because previous studies have shown that the growing of aviation in future years maydramatically increase their impact over the environment. For this reason, novel airframe and propulsion layouts asthe N3-X concept has been developed in the recent years. Two special features highlight from this concept, which areboundary layer ingestion and distributed propulsion. Although the benfits produced by these features is large, theypresent numerous challenges. From the aerodynamic perspective, BLI induced distortion and intake losses have showndramatically mitigate the benefits. Therefore, this aspects have been included in the method developed to assess thepropulsion system performance. This method enables to broad the spectrum of concepts studied, whilst using differentarchitectures and approaches with different levels of fidelity. To summarize, this paper intends to give an insight of thework carried out in the area of innovative propulsion designs for aircraft. This is to give a global idea of the frameworkutilized, whilst emphasize major issues which need to be addressed in order to make feasible these concepts.

 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Chengyuan Liu

School of Aeronautics and Astronautics, Shanghai Jiao Tong University, 800 Dong Chuan Rd., Shanghai, 200240, P.R.China

Citas

Airbus. Delivering the future, global market forecast 2011-2030 full book. Web Pa-ge Visited in March 2012, none 2011. URL

ACARE. Aeronautics and air transport: Beyond vision 2020 (towards 2050). Accessed in March 2012, none 2010. URL

E. Greitzer, P. Bonnefoy, E de la Rosa Blanco, and et al. N+3 aircraft concept designs and trade studies, final report. Cr2010216794 vol1, NASA, Cleveland, Ohio, 9 2010. NASA/CR-2010-216794/VOL2.

H. Kim, J. Berton, and S. Jones. Low noise cruise efficient short take-off and landing transport vehicle study. In 6th AIAA Aviation Technology, Integration and Operations Conference (ATIO), page none, Wichita, Kansas, 9 2006. AIAA. AIAA 2006 7738.

Meng-Sing L. Hyoungjin K. Flow simulation of n2b hybrid wing body configuration. In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, page none. AIAA,

AIAA 2012-0838.

Alexis Manneville. Propulsion system concepts for silent aircraft. 2004. URL Thesis (S.M.)–Massachusetts Institute of Technology,

Dept. of Aeronautics and Astronautics, 2004.

E. de la Rosa, C. Hall, and D.l Crichton. Challenges in the silent aircraft engine design. In 45th AIAA Aerospace Sciences Meeting and Exhibit, page none, Reno, Nevada, 1 2007. AIAA. AIAA 2007 454.

R Liebeck. Design of the blended wing body subsonic transport. Journal of Aircraft, 41 (1):10–25, 2004. doi: 10.2514/1.42409. URL

G. Brown. Weights and efficiencies of electric components of a turboelectric aircraft propulsion system. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, page none, Orlando, Florida, 2011. AIAA.

J. Felder, H. Kim, G. Brown, and et al. An examination of the effect of boundary layer ingestion on turboelectric distributed propulsion systems. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, page none, Orlando, Florida, 1 2011. AIAA. AIAA 2011 300.

D. Rodriguez. A multidisciplinary optimization method for designing boundary layer ingesting inlets. In Symposium on Multidisciplinary Analysis and Optimization, page none, Atlanta, 2002. AIAA/ISSMO.

J. Felder, H. Kim, and G. Brown. Turboelectric distributed propulsion engine cycle analysis for hybrid-wing-body aircraft. In 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, page none, Orlando, Florida, 1 2009. AIAA. URL. AIAA 2009-1132.

E. Valencia, L. Chengyuan, P. Laskaridis, and et al. An alternative configuration for distributed propulsionwith boundary layer ingestion on a hybridwing body airframe. In 21st ISABE Conference, pages 1822– 1829, Busan, Korea, september 2013. ISABE.

E. Valencia, D. Nalianda, P. Laskaridis, and et al. Methodology to assess the performance of an aircraft concept with distributed propulsion and boundary layer ingestion using a parametric approach. Part G:Journal of Aerospace, June 2014.

E. Valencia, N. Devaiah, P. Laskaridis, and et al. Discretized

semi-empirical approach to assess the effects of combined circumferential and radial distortion patterns for boundary layer ingestion systems. manuscript submitted for publication, 11 2014.

C.A. Luongo, P.J. Masson, T. Nam, D. Mavris, H.D. Kim, G.V. Brown,M.Waters, and D. Hall. Next generation more-electric aircraft: A potential application for hts superconductors. Applied Superconductivity, IEEE Transactions on, 19(3):1055 –1068, june 2009. ISSN 1051-8223. doi: 10.1109/TASC.2009.2019021.

P.J. Masson, J.E. Pienkos, and C.A. Luongo. Scaling up of hts motor based on trapped flux and flux concentration for large aircraft propulsion. Applied Superconductivity, IEEE Transactions on, 17(2):1579– 1582, 2007. ISSN1051-8223. doi: 10.1109/TASC.2007.

P.J. Masson and C.A. Luongo. Hts machines for applications in all-electric aircraft. Power Engineering Society General Meeting, 2007. IEEE, pages 1–6, 6 2007. doi: 10.1109/PES.2007.385622.

H. Kim and J. Felder. Control volume analysis of boundary layer ingesting propulsion systems with or without shock wave ahead of the inlet. In 49th AIAA Aerospace Sciences Meeting including the New

Horizons Forum and Aerospace Exposition, page none, Orlando, Florida, 1 2011. AIAA. AIAA 2011 222.

Chengyuan Liu, Georgios Doulgeris, Panagiotis Laskaridis, and Riti Singh. Turboelectric distributed propulsion system modelling for

hybrid-wing-body aircraft. 07 2012. URL. AIAA 2012-3700.

D Rodriguez. Multidisciplinary optimization method for designing boundary-layer-ingesting inlets. Journal of Aircraft AIAA, (3):883–894, 2009. doi: 10. 1109/TASC.2005.849616. AIAA 2002-5665.

R.S. Mazzawy and G.A. Banks. Modelling and analysis of the TF30-P-3 compressor system with inlet pressure distortion / by R.S. Mazzawy, and G.A. Banks. NASA Contractor Report.Washington, D.C. : NASA, 1976., 1976. NASA CR - 134996, PWA-5302.

R.S. Mazzawy, D.E. Hadded, and D.A. Fulkerson. F100(3) parallel compressor computer code and user’s manual. NASA Contractor Report.Washington, D.C. : NASA, 1978., 1978. NASA CR - 135388, PWA-5549- 8.

Angelique Plas. Performance of a boundary layer ingesting propulsion system. 2006. URL. by Angelique Plas.; Thesis (S.M.)–Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2006.; Includes bibliographical references (p. 111-114).

V. Jerez, C. Hall, and Y. Colin. A study of fandistortion interaction within the nasa rotor 67 transonic stage. 134(5):1–12, 2012.

Radu Cirligeanu and Vassilios Pachidis. IGV loss and deviation modelling. Restricted Theses 2010. 2010. URL. MSc theses in Cranfield University, Accessed 10 july 2014.

G. Doulgeris. Modelling and integration of advanced propulsion systems. Theses 2008, Cranfield University. 2008. PhD theses in Cranfield University.

Vassilios Pachidis, Pericles Pilidis, Ioannis Templalexis, and Luca Marinai. An iterative method for blade profile loss model adaptation using streamline curvature. Journal of Engineering for Gas Turbines and Power, 130(1):1 – 8, 2008. ISSN 07424795. doi: 10.1115/1.2747643. URL.

P. I. Wright and D. C. Miller. An improved compressor performance prediction model. 1991. Turbomachinery latest development in a changing scene proceedings of the IME European ConferenceMarch 19-20, 1991, London, UK.; Turbomachinery.

D.C. Miller and D.L. Wasdell. Off-design prediction of compressor blade losses. 1987. IMECHE C279/87, 1987.

Rudi Kirner. An investigation into the benefits of distributed propulsion on advanced aircraft configurations. Theses 2013. Cranfield University, 2013. URL MSc theses in Cranfield University, Accessed july 2014.

J. Felder, M. Tong, and J. Chu. Sensitivity of mission energy consumption to turboelectric distributed propulsion design assumptions on the N3-X hybrid wing body aircraft. In 48th AIAA Joint Propulsion

Conference and Exhibit, Atlanta, Georgia, 7 2012. AIAA. AIAA 2012-3701.

Descargas

Publicado

2015-02-28

Cómo citar

Valencia, E., Laskaridis, P., Singh, R., Liu, C., Cando, E., & Hidalgo, V. (2015). Review of the Investigation of Innovative Propulsion System Architectures for Aircraft. Revista Politécnica, 35(3), 1. Recuperado a partir de https://revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/341