Convergence to steady state solutions of a particular class of fracctional cooperative systems
##plugins.themes.bootstrap3.article.main##
Resumen
Descargas
Descargas
Detalles del artículo
Citas
D.G. Aronson and H.F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics, Adv. Math. 30, 1978, pp. 33-76.
H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. I. Species persistence, J. Math. Biol 51, 2005, pp. 75-113.
H. Berestycki, J.-M. Roquejoffre, and L. Rossi, The periodic patch model for population dynamics with fractional diffusion, Discrete Contin. Dyn. Syst. Ser. S 4, 2011, pp. 1-13.
X. Cabré and J. Roquejoffre. Propagation de fronts dans les équations de Fisher KPP avec diffusion fractionnaire. C. R. Math. Acad. Sci. Paris 347, 2009, pp. 1361-1366.
X. Cabré and J. Roquejoffre. The influence of fractional diffusion in Fisher-KPP equation. Commun. Math. Phys 320, 2013, pp 679-722.
A-C. Coulon and M. Yangari. (2014, Sept.), Exponential propagation for fractional reaction-diffusion cooperative systems with fast decaying
initial conditions, 2014, Available:
url{http://arxiv.org/pdf/1405.5113v2.pdf}.
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, New York, 1981, pp. 49-62.
A.N. Kolmogorov, I.G. Petrovsky and N.S. Piskunov, 'Etude de l'equation de la diffusion avec croissance de la quantit'e de mati'ere et son application 'a un probl'eme biologique, Bull. Univ. 'Etat Moscou S'er. Inter. A 1, 1937, pp. 1-26.
B. Li, H. Weinberger and M. Lewis. Spreading speeds as slowest wave speeds for cooperative systems. Math. Biosci. 196, 2005, pp. 82-98.
R. Mancinelli, D. Vergni, and A. Vulpiani. Front propagation in reactive systems with anomalous diffusion, Phys. D 185, 2003, pp. 175-195.
H.F. Weinberger, M. Lewis and B. Li. Analysis of linear determinacy for spread in cooperative models. J. Math. Biol. 45, 2002, pp. 183-218.