Large Eddy Simulation of Partial Cavitation Around a 2D Plane-Convex Hydrofoil

Autores/as

  • Ricardo Soto Profesor Principal EPN
  • Esteban Valencia Profesor Auxiliar EPN
  • Edgar Cando Profesor Auxiliar EPN
  • XianWu Luo Professor Tsinghua

Resumen

Resumen: Investigaciones sobre la cavitación tienen una gran importancia económica en el campo de la maquinaria hidráulica. Durante más de 40 años, métodos de mecánica computacional de fluidos han sido para entender estosfenómenos y ayudar a mejorar los diseños de maquinarias y equipos, como el caso de bombas y turbinas hidráulicas.Sin embargo, la cavitación aparece en flujos con números de Reynolds grandes, por lo cual, los modelos tradicionales deturbulencia Reynolds-averaged Navier-Stokes (RANS) k􀀀e y k􀀀w no son capaces de capturar el fenómeno de burbujasen movimiento. Por lo cual, la presente investigación usa el modelo de turbulencia Large Eddy Simulation (LES) conmétodos implícitos (ILES) y explícitos (ELES), para simular la cavitación alrededor de un perfil plano-convexo . Lasimulación CFD ha sido llevada a cabo usando el programa de código abierto OpenFOAM y lenguaje python parael procesamiento de datos. La investigación indica que ELES y ILES porporcionan resultados similares a resultadosexperimentales obtenidos en el túnel de cavitación de la École Polytechnique Fédérale de Lausanne (EPFL).

Abstract: Investigations of attached partial cavitation are important because to prevent damages in hydrulic machineryand to reduce the costs. As expected computational fluid dynamics (CFD) methods have been developed for more than40 years to understand this phenomenon and to improve the machinery designs, as pumps and hydraulic turbines.However, cavitation appears at high Reynolds numbers, so that, the traditional turbulence models Reynolds-averagedNavier-Stokes (RANS) k􀀀e and k􀀀w are not able to capture the bubbles motion. Therefore, large eddy simulation withimplicit (ILES) and explicit (ELES) turbulence methods have been used to capture and study partial cavitation arounda plane-convex hydrofoil. The CFD simulation has been carried out by the free open source software OpenFOAM andpython language for data analysis. The research shows that ELES and ILES give results similar to experiments from thecavitation tunnel of the École Polytechnique Fédérale de Lausanne (EPFL).

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Ricardo Soto, Profesor Principal EPN

Jefe del Departamento de Ingeniería Mecánica EPN

 

Esteban Valencia, Profesor Auxiliar EPN

Jefe del Laboratorio de Turbomaquinaria y Mecánica de Fluidos

Profesor Auxiliar EPN

PhD candidate Cranfield

Edgar Cando, Profesor Auxiliar EPN

PhD candidate Tsinghua

Profesor Auxiliar EPN

XianWu Luo, Professor Tsinghua

Professor at State Key Laboratory of Hydro science and Engineering, Tsinghua  University, Beijing, China

Citas

V. Hidalgo, X. Luo, A. Peña, E. Valencia, R. Soto, and A. Yu, “Benefits of hydropower research in Ecuador using OpenFOAM based on CFD technology (a practical cavitation study for NACA0015),” in IX CONGRESO DE CIENCIA Y TECNOLOGÍA ESPE 2014, pp. 123 – 127, ESPE, May 2014.

V. Hidalgo and N. Chen, “Application of vortex process to cleaner energy generation,” Applied Mechanics and Materials, vol. 71, pp. 2196–2203, 2011.

V. Hidalgo, X. Luo, R. Huang, and E. Cando, “Numerical simulation of cavitating flow over 2d hydrofoil using openFOAM adapted for debian operating system with LXDE based in kernel GNU/Linux,” in Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering, pp. 1–8, 2014.

A. Kubota, H. Kato, and H. Yamaguchi, “A new modelling of cavitating flows: A numerical study of unsteady cavitation on a hydrofoil section.,” Journal of fluid Mechanics, vol. 240, no. 1, pp. 59 – 96, 1992.

X. Zhang, W. Zhang, J. Chen, L. Qiu, and D. Sun, “Validation of dynamic cavitation model for unsteady cavitating flow on NACA66,” Science China Technological Sciences, vol. 57, no. 4, pp. 819 – 827,

B. Ji, X. Luo, Y. Wu, X. Peng, and Y. Duan, “Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil,” International Journal of Multiphase

Flow, vol. 51, pp. 33–43, May 2013.

N.-x. Lu, R. E. Bensow, and G. Bark, “LES of unsteady cavitation on the delft twisted foil,” Journal of Hydrodynamics, Ser. B, vol. 22, no. 5, pp. 784–791, 2010.

B. Huang, Y. Zhao, and G.Wang, “Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows,” Computers & Fluids, vol. 92, pp. 113–124, 2014.

R. E. Bensow and M. Liefvendahl, “Implicit and explicit subgrid modeling in les applied to a marine propeller,” in 38th Fluid Dynamics Conference and Exhibit, American Institute of Aeronautics and Astronautics, 2008.

B. Thornber and D. Drikakis, “The influence of initial conditions on turbulent mixing due to richtmyer-meshkov instability,” Journal of Fluid Mechanics, vol. 654, pp. 99–139, 2010.

V. Hidalgo, X. Luo, A. Yu, and R. Soto, “Cavitating flow simulation with mesh development using Salome open source software,” in Proceedings of the 11 th International Conference on Hydrodynamics (ICHD 2014) (T. S. Keat,W. Xikun, G.W. Min, and J. CHUA,m eds.), pp. 400 – 405, Nanyang Technological University, Singapore, Oct. 2014.

V. Hidalgo, X. Luo, B. Ji, and A. Aguinaga, “Numerical study of unsteady cavitation on 2d NACA0015 hydrofoil using free/open source software,” Chin. Sci. Bull., pp. 1–7, June 2014.

A. Krauze, A. Rudevics, A. Muiznieks, A. Sabanskis, N. Jekabsons, and B. Nacke, “Unsteady 3d LES modeling of turbulent melt flow with AC traveling EM fields for a laboratory model of the CZ silicon crystal growth system,” in International Scientific Colloquium Modelling for Electromagnetic Proceeding, pp. 85,90, Oct. 2008.

M. Morgut, E. Nobile, and I. Bilus, “Comparison of mass transfer models for the numerical prediction of sheet cavitation around a hydrofoil,” International Journal of Multiphase Flow, vol. 37, July 2011.

V. H. Hidalgo, X. W. Luo, X. Escaler, J. Ji, and A. Aguinaga, “Numerical investigation of unsteady cavitation around a NACA 66 hydrofoil using Open- FOAM,” IOP Conference Series: Earth and Environmental Science, vol. 22, p. 052013, Dec. 2014.

X. Escaler, M. Farhat, F. Avellan, and E. Egusquiza, “Cavitation erosion tests on a 2d hydrofoil using surface-mounted obstacles,” Wear, vol. 254, no. 5, pp. 441 – 449, 2003.

C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-d finite element mesh generator with built-in pre- and postprocessing facilities,” International Journal for Numerical Methods in Engineering, vol. 79, no. 11, pp. 1309– 1331, 2009.

Descargas

Publicado

2015-02-28

Cómo citar

Soto, R., Valencia, E., Cando, E., & Luo, X. (2015). Large Eddy Simulation of Partial Cavitation Around a 2D Plane-Convex Hydrofoil. Revista Politécnica, 35(3), 28. Recuperado a partir de https://revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/385