Rayleigh-type Optical Mixing Signal Intensity Reconstruction From Sparse Data Using an Inverse Problem Approach
##plugins.themes.bootstrap3.article.main##
Resumen
Abstract: Previous work by one of the authors has shown the dependence of the Rayleigh-type optical mixing (RTOM) signal intensity on the incident pump and probe frequencies for different values of the ratio of relaxation times k = T1 / T2. In this work an inverse problem methodology is defined to determine the ratio of the relaxation times k from sparse and/or noisy incident pump and probe frequency data in order to reconstruct the full field RTOM signal intensity. The simulated results show a robust procedure which points to potential efficient experimental application, to be pursued in the near future.
Resumen: Trabajo previo de uno de los autores ha demostrado la dependencia de la intensidad de la señal de mezcla óptica tipo Rayleigh (RTOM) en la frecuencia de bombeo y de prueba para valores diferentes de relación de tiempos de relajación k = T1 / T2. En este trabajo se define una metodología de problema inverso para determinar la relación de tiempos de relajación k de datos incidentes, que son escasos y/o con ruido, de frecuencia de bombeo y de prueba que son usados para reconstruir la intensidad de la señal de RTOM de campo entero. Los resultados simulados demuestran un procedimiento robusto que apunta a una potencial aplicación experimental, que se la perseguirá en un futuro cercano.
Descargas
Descargas
Detalles del artículo
Citas
Franco, H. J., Paz, J. L., Reif, I., Marcano O., A. & Salazar, M. C. (1990). Symmetry properties of the Rayleigh-type optical mixing signal in frequency space. Journal of the Optical Society of America B, 7 (1), 57-63.
http:/dx.doi.org: 10.1364/JOSAB.7.000057
Garcia Golding, F. & Marcano O., A. (1985). High-order effects in Rayleigh-type optical mixing. Physical Review A, 32, 1526-1530.
http://dx.doi.org/10.1103/PhysRevA.32.1526
Haroche, S. & Hartman, F. (1972). Theory of Saturated-Absorption Line Shapes. Physical Review A, 6, 1280-1299.
http://dx.doi.org/10.1103/PhysRevA.6.1280
Hartley, H. O. (1961). The Modified Gauss-Newton Method for the Fitting of Non-Linear Regression Functions by Least Squares. Technometrics, 3(2), 269-280.
http://dx.doi.org/10.1080/00401706.1961.10489945
Marquardt, D. W. (1963). An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics. 11(2), 431-441.
http://dx.doi.org/10.1137/0111030.
Masumoto, Y., Shionoya, S., & Okamoto, H. (1985). Ultrafast relaxation of excitons in GaAs-AlAs multi-quantum-well structures studied by resonant Rayleigh-type optical mixing. Optical Communications. 53, 385-388.
http://dx.doi.org/10.1016/0030-4018(85)90023-9.
Paz, J. L., Franco, H. J., Reif, I., Marcano O., A. & Garcia Golding, F. (1988). Pump-power dependence due to parametric amplification of the Rayleigh-type optical-mixing signal. Physical Review A, 37 (9), 3381-3385.
http://dx.doi.org/10.1103/PhysRevA.37.3381
Souma, H., Yajima, T. & Y. Taira (1980). Ultrafast Relaxation Study by Resonant Rayleigh-Type Mixing Spectroscopy Using Picosecond Light Pulses. Journal of the Physical Society of Japan, 48, 2040-2047.
http://dx.doi.org/ 10.1143/JPSJ.48.2040.
Souma, H., Heilweil, E. J., & Hochstrasser, R. M. (1982). Resonant nonlinear optical mixing using the phase conjugate configuration: Spectroscopic studies. The Journal of Chemical Physics, 76, 5693-5702.
http://dx.doi.org/10.1063/1.442990
Yajima, T. & Souma, H. (1978). Study of ultra-fast relaxation processes by resonant Rayleigh-type optical mixing. I. Theory. Physical Review A, 17, 309-323.
http://dx.doi.org/10.1103/PhysRevA.17.309.
Yajima, T., Souma, H. & Ishida, Y. (1978). Study of ultra-fast relaxation processes by resonant Rayleigh-type optical mixing. II. Experiment on dye solutions. Physical Review A, 17, 324-334.