Análisis de Diagnosticabilidad y Localización de Sensores en un Pozo de Extracción de Petróleo por Inyección de Gas

##plugins.themes.bootstrap3.article.main##

Jose Aguilar

Rubén Leal

Louise Travé-Massuyés

Edgar Camargo

Addison Ríos



Resumen

Resumen: En este trabajo se propone el uso de un enfoque basado en algoritmos genéticos para obtener relaciones de redundancia de análisis para estudiar la propiedad de diagnosticabilidad en procesos petroleros, y si esta no cumple, nuestro enfoque permite estudiar el problema de localización de sensores con el fin de cumplir con ella. Las relaciones de redundancia se basan en un análisis estructural sobre un grafo bipartito. El análisis de fallas es estudiado usando una función multi-objetivo en varios algoritmos genéticos que describen los diferentes criterios que se deben tratar con el fin de llegar a la propiedad diagnosticabilidad en el sistema. Además, nuestro enfoque permite estudiar el problema de localización de sensores en los sistemas que no cumplen las propiedades de detectabilidad o aislabilidad, usando otro algoritmo genético.

Abstract: In this work we propose to use an approach based on genetic algorithms to obtain analytical redundancy relations to study the diagnosability property on oil processes, and if this not fulfill, our approach allows studying the sensor placement problem in order to fulfill it. The redundancy relations are based on a structural analysis over a bipartite graph. The faults analysis is studied using a multi-objective fitness function in several genetic algorithms which describe the different constraints to be covered in order to reach the diagnosability property on the system. Additionally, our approach allows studying the sensors placement problem on systems that do not fulfill the detectability or isolability properties, using another genetic algorithm.


 

 


 

Descargas

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Citas

M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and fault tolerant control. Berlin: Springer, 2003.

J. Armengol, A. Bregon, T. Escobet, E. Gelso, M. Krysander, M. Nyberg, X. Olive, B. Pulido, and L. Travé-Massuyés, Minimal structurally overdetermined sets for residual generation, A comparison of alternative approaches, In Proceedings of the 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, pp 1480-1485, 2009.

L. Travé-Massuyés, T. Escobet, and X. Olive. Diagnosability analysis based on component supported analytical redundancy. IEEE Trans. on Systems, Man, and Cybernetics - Part A: Systems and Humans: pp 1146-1160, 2006.

C. Svard and M. Nyberg. Residual generators for fault diagnosis using computation sequences with mixed causality applied to automotive systems, IEEE Transactions on Systems, Man, and Cybernetics - Part A, 40(6):pp 1310-1328, 2010

S. Sen, S. Narasimhan, K. Deb. Sensor network design of linear processes using genetic algorithms, Comput. Chem. Eng. 22 (3), pp. 385-390, 1998

S. Jin, M. Zhou, A.S. Wu. Sensor network optimization using a genetic algorithm, in: 7th World Multiconference on Systemics, Cybernetics, 2003

A. Bhondekar, R. Vig, M. LalSingla, C. Ghanshyam, P. Kapur. Genetic Algorithm Based Node Placement Methodology For Wireless Sensor Networks, Proceedings of the International Multi Conference of Engineers and Computer Scientists Vol I IMECS, 2009.

M. Krysander, J. Ã…slund, and E. Frisk, A structural algorithm for finding testable sub-models and multiple fault isolability analysis, In Proceedings of the 21st International Workshop on Principles of Diagnosis (DX-10), 2010.

L. Travé-Massuyés, T. Escobet, and R. Milne. Model-based diagnosability and sensor placement. application to a frame 6 gas turbine subsystem. In DX01 twelfth international workshop on principles of diagnosis, pp 205-212, 2001.

M. Krysander, J. Ã…slund, and M. Nyberg, An efficient algorithm for finding minimal over-constrained subsystems for model-based diagnosis, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 38(1), pp 197-206, 2008

R. Leal, J. Aguilar, L. Trave-Massuyes, A. Ríos, E. Camargo."A Genetic Algorithm Approach for Diagnosability Analysis", International Journal of Engineering Development and Research, Vol.2, No. 4, pp. 3786-3799, 2014

M. Krysander, M. Nyberg. Structural analysis utilizing MSS sets with application to a paper plant. Proceedings of the Thirteenth International Workshop on Principles of Diagnosis, 2002

M. Nyberg. Automatic design of diagnosis systems with application to an automotive engine. Proceedings Control Engineering Practice, 87(8): pp 993-1005, 1999

V Puig, J. Quevedo, T. Escobet, B. Pulido. On the integration of detection and isolation in model based fault diagnosis. Proceeding In DX04, 15th International Workshop on Principles of Diagnosis, 2004

G. Hernández, E. Alí and T. Sharon. Manual del curso de levantamiento artificial por gas avanzado. Segunda edición. PDVSA Intevep, Venezuela. 2001

M. Krysander, E. Frisk. Sensor Placement for Fault Diagnosis IEEE Transactions on Systems, Man, and Cybernetics part A: Systems and Humans, vol. 38, no. 6, 2008

E. Frisk, M. Krysander. Sensor placement for maximum fault isolability. In: Proceedings of 18th international workshop on principles of diagnosis pp 106-113, 2007

R. Leal, E. Camargo, J. Aguilar, A. Ríos and L. Travé "Analysis of diagnosability for gas lift Wells", Ingeniería y Ciencias Aplicadas: Modelos Matemáticos y Computacinales (Ed. E. Dávila, J. Del Río, M. Cerrolaza, R. Chacón), Sociedad Venezolana de Métodos Numéricos en Ingeniería, pp. EC91-EC97, 2014

J. Aguilar, F. Rivas (Eds), Introducción a las Técnicas de Computación Inteligente, Meritec, Venezuela. 2001.