Unsupervised Classifier for Dynamic Systems Based on ISODATA

##plugins.themes.bootstrap3.article.main##

Andrés F. Cela

Franklin L. Sánchez Catota



Resumen

This paper describes a method for designing an algorithm to classifier a dynamic set. Nowadays, the classifiers are well known, this work shows a combination of different techniques in order to get a better classifier. The Bayes theory is the initial point to get a KNN classifier. In the set of study there is not possible to calculate the classes or their parameters, so an unsupervised classifier based on KNN classifier is used for this approach. Finally, in the last step, it is made a modification in the seed for applying in a dynamic set. It is shown that this approach reduces the process time in 25% and improves the accuracy in 90%.

Descargas

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Citas

M. B. A. Haghighat y E. Namjoo, «Evaluating the informativity of features in dimensionality reduction methods», en 2011 5th International Conference on Application of Information and Communication Technologies (AICT), 2011, pp. 1-5.

Laurens van der Maaten y ic Postma, «Dimensionality Reduction: A Comparative Review». Tilburg University, 26-oct-2009.

D. Gillies y Y. Zheng, «Dynamic Interactions with the Philosophy of Mathematics», Theor. Rev. Teoría Hist. Fundam. Cienc., vol. 16, n.o 3, pp. 437-459, jun. 2008.

R. O. Duda, P. E. Hart, y D. G. Stork, Pattern Classification. John, 2nd ed., Wiley & Sons, 2012, pp. 20-200.

J. Carpenter, P. Clifford, y P. Fearnhead, «An Improved Particle Filter for Non-linear Problems», 2004, pp. 2-7.

M. Isard y A. Blake, «Contour Tracking By Stochastic Propagation of Conditional Density», 1996, pp. 343-356.

K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed., Academic Press, 1990, pp. 120-300.

Y.-H. Cai, «The comparative study of different Bayesian classifier models», en 2010 International Conference on Machine Learning and Cybernetics (ICMLC), 2010, vol. 1, pp. 309-313.

C. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, 2007, pp.100-200.

J. M. Kleinberg, «Two algorithms for nearest-neighbor search in high dimensions», en Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, New York, NY, USA, 1997, pp. 599-608.

J. C. Bezdek, «A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms», Ieee Trans. Pattern Anal. Mach. Intell., vol. PAMI-2, n.o 1, pp. 1-8, 1980.