Parabolic Systems Involving Sectorial Operators: Existence and Uniqueness of Global Solutions.

Autores/as

  • Miguel Yangari Facultad de Ciencias Escuela Politécnica Nacional
  • Diego Salazar Escuela Politécnica Nacional

Resumen

Abstract: The aim of this paper is to study the existence and uniqueness of global solutions in time to systems ofequations, whenthe diffusion terms are given by sectorial generators.

 

Resumen: El objetivo de este artículo es estudiar la existencia y unicidad de soluciones globales en tiempo para sistemas deecuaciones, cuando los términos de difusión están dados por operadores sectoriales

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Miguel Yangari, Facultad de Ciencias Escuela Politécnica Nacional

Profesor Titular Auxiliar, Grado 1, Nivel 1.

Departamento de Matemática

Facultad de Ciencias

Diego Salazar, Escuela Politécnica Nacional

Técnico Docente

Departamento de Matemática

Facultad de Ciencias

Citas

Aizicovici S., and Mckibben M. (2000). Existence results for a class of

abstract nonlocal Cauchy problems. Nonlinear Analysis. 39, 649-668.

Benchohra, M and Ntouyas, S. (2001). Nonlocal Cauchy problems for neutral functional differential and integrodif- ferential inclusions in Banach spaces. J. Math. Anal. Appl. 258, 573-590.

Byszewski L. and Lakshmikantham V. (1990). Theorem about the existence and uniqueness of a solutions of a non- local Cauchuy problem in a Banach space. Appl. Anal. 40, 11-19.

Byszewski, L. (1991). Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162, 494-505.

Byszewski, L. (1993). Existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy problem. Zesz. Nauk. Pol. Rzes. Mat. Fiz. 18, 109-112.

Byszewski, L. and Akca, H. (1998). Existence of solutions of a semilinear functional-differential evolution non-local problem. Nonlinear Analysis. 34, 65-72.

Cabré, X. and Roquejoffre, J. (2013). The influence of fractional diffusion in Fisher-KPP equation. Commun. Math. Phys. 320, 679-722.

Fu, X. and Ezzinbi, K. (2003). Existence of solutions for

neutral functional differential evolution equations with non- local

conditions. Nonlinear Analysis. 54, 215-227.

Henry, D. (1981). Geometric theory of semilinear parabolic

equations. Berlin, Germany: Springer-Verlag.

Jackson, D. (1993). Existence and uniqueness of solutions to semilinear nonlocal parabolic equations.J.Math. Anal. Appl. 172, 256-265.

Liang, J., Van Casteren, J., and Xiao, T. (2002). Nonlocal Cauchy problems for semilinear evolution equations. Nonli- near Anal.

Ser. A: Theory Methods. 50, 173-189.

Lin,Y. and Liu, J. (1996). Semilinear integrodifferential equations

with nonlocal Cauchy Problems. Nonlinear Analysis. 26, 1023-1033.

Ntouyas, S. and Tsamotas, P. (1997). Global existence for semilinear evolution equations with nonlocal conditions. J. Math. Anal.

Appl. 210, 679-687.

Ntouyas, S and Tsamotas, P. (1997). Global existence for semilinear integrodifferential equations with delay and non- local conditions. J. Math. Anal. Appl. 64, 99-105

Yangari, M. (2015). Existence and Uniqueness of Global Mild Solutions for Nonlocal Cauchy Systems in Banach Spaces. Revista Politécnica. 35(2), 149-152.

Descargas

Publicado

2016-09-30

Cómo citar

Yangari, M., & Salazar, D. (2016). Parabolic Systems Involving Sectorial Operators: Existence and Uniqueness of Global Solutions. Revista Politécnica, 38(1), 40. Recuperado a partir de https://revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/479