Determinación de Invariantes en Grandes Centros de Datos Basados en Topología Fat-Tree

Autores/as

  • J Ortiz Universidad de los Andes
  • J Londono
  • F Novillo
  • A Ampuno
  • M Chavez

Resumen

Resumen: Durante los últimos años ha existido un fuerte incremento en el acceso a internet, causando que los centros de datos (DC) deban adaptar dinámicamente su infraestructura de red de cara a enfrentar posibles problemas de congestión, la cual no siempre se da de forma oportuna. Ante esto, nuevas topologías de red se han propuesto en los últimos años, como una forma de brindar mejores condiciones para el manejo de tráfico interno, sin embargo es común que para el estudio de estas mejoras, se necesite recrear el comportamiento de un verdadero DC en modelos de simulación/emulación. Por lo tanto se vuelve esencial validar dichos modelos, de cara a obtener resultados coherentes con la realidad. Esta validación es posible por medio de la identificación de ciertas propiedades que se deducen a partir de las variables y los parámetros que describen la red, y que se mantienen en las topologías de los DC para diversos escenarios y/o configuraciones. Estas propiedades, conocidas como invariantes, son una expresión del funcionamiento de la red en ambientes reales, como por ejemplo la ruta más larga entre dos nodos o el número de enlaces mínimo que deben fallar antes de una pérdida de conectividad en alguno de los nodos de la red. En el presente trabajo se realiza la identificación, formulación y comprobación de dos invariantes para la topología Fat-Tree, utilizando como software emulador a mininet. Las conclusiones muestran resultados concordantes entre lo analítico y lo práctico.

 

Abstract: In recent years there has been a sharp increase in access to internet, causing data centers (DC) should dynamically adapt its network infrastructure to face possible problems of congestion, which is not always given in a timely manner. Given this, new network topologies have been proposed in recent years as a way to provide better conditions for handling internal traffic, however it is common for the study of these improvements the need to recreate the behavior of a real DC in models of simulation/emulation. Therefore it becomes essential to validate these models, in order to obtain consistent results with reality. Such validation is possible through the identification of certain properties which are derived from the variables and parameters that describe the network and are maintained in the DC topologies for different scenarios and/or configurations. These properties, known as invariant, are an expression of the operation of the network in real environments, such as the longest path between two nodes or the minimum number of links that must fail before a loss of connectivity on one of the nodes of the network. In this paper, the identification, formulation and testing of two invariants for the Fat-Tree topology is performed, using MiniNet as the software emulator. The conclusions show good agreement between the analytical and the practical.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alberto Dainotti, Alessio Botta, Antonio Pescapé, and Giorgio Ventre.

Searching for invariants in network games traffic. In Proceedingsof the 2006 ACM CoNEXT conference (CoNEXT '06). ACM, New York, NY, USA., Article 43 , 2 pages, 1989.

Avallone, S., Guadagno, S., Emma, D., Pescapè, A., & Ventre, G. (2004, September). D-ITG distributed internet traffic generator. In Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings. First International Conference on the (pp. 316-317). IEEE.

Bari, M.F.; Boutaba, R.; Esteves, R.; Granville, L.Z.; Podlesny, M.;

Rabbani, M.G.; Qi Zhang; Zhani, M.F., "Data Center Network Virtualization: A Survey," Communications Surveys & Tutorials, IEEE , vol.15, no.2, pp.909,928, Second Quarter 2013

Bengt Ahlgren, Marcus Brunner, Lars Eggert, Robert Hancock, and Stefan Schmid. 2004. Invariants: a new design methodology for network architectures. In Proceedings of the ACM SIGCOMM workshop on Future directions in network architecture (FDNA '04). ACM, New York, NY, USA, 65-70.

Benson, T., Akella, A., & Maltz, D. A. (2010, November). Network traffic characteristics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement (pp. 267-280). ACM.

Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A network in a laptop: rapid prototyping for software-defined networks. In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks (Hotnets-IX). ACM, New York, NY, USA, , Article 19 , 6 pages.

Breslau, L., Estrin, D., Fall, K., Floyd, S., Heidemann, J., Helmy, A., ... & Yu, H. (2000). Advances in network simulation. Computer, 33(5), 59-67.

Chen, Z., Peng, L., Zhao, S., Zhang, L., & Jing, S. (2014). Feature Selection Toward Optimizing Internet Traffic Behavior Identification. In Algorithms and Architectures for Parallel Processing (pp. 631-644). Springer International Publishing.

Greenberg, A., Hamilton, J. R., Jain, N., Kandula, S., Kim, C., Lahiri, P., ... & Sengupta, S. (2009, August). VL2: a scalable and flexible data center network. In ACM SIGCOMM Computer Communication Review (Vol. 39, No. 4, pp. 51-62). ACM.

Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., ... & Lu, S.

(2009). BCube: a high performance, server-centric network architecture for modular data centers. ACM SIGCOMM Computer Communication Review, 39(4), 63-74.

Kurup, P. M., & Preethi, J. (2014). Packet Reordering To Improve Data Center Network Using Near Optimal Traffic Engineering.

Lee, David S., and Jeffrey L. Kalb. "Network Topology Analysis."

Luan, G. (2014). Buffer Stopping Time Analysis in Data Center Networks.

Martin F. Arlitt and Carey L. Williamson. 1996. Web server workload characterization: the search for invariants. In Proceedings of the 1996 ACM SIGMETRICS international conference on Measurement and modeling of computer systems (SIGMETRICS '96), Blaine D. Gaither (Ed.). ACM, New York, NY, USA, 126-137

Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scalable, commodity data center network architecture. In Proceedings of the ACM SIGCOMM 2008 conference on Data communication (SIGCOMM '08). ACM, New York, NY, USA, 63-74.

Niranjan Mysore, R., Pamboris, A., Farrington, N., Huang, N., Miri, P., Radhakrishnan, S., ... & Vahdat, A. (2009, August). Portland: a scalable fault-tolerant layer 2 data center network fabric. In ACM SIGCOMM Computer Communication Review (Vol. 39, No. 4, pp. 39-50). ACM.

Nunes, B., Mendonca, M., Nguyen, X., Obraczka, K., & Turletti, T. (2014). A survey of software-defined networking: Past, present, and future of programmable networks.

Orebaugh, A., Ramirez, G., & Beale, J. (2006). Wireshark & Ethereal network protocol analyzer toolkit. Syngress.

Park, H. W., Yeo, I. Y., Lee, J. R., & Jang, H. (2014). Study on network architecture of big data center for the efficient control of huge data traffic. Computer Science and Information Systems, (00), 67-67.

Sally Floyd and Vern Paxson. 2001. Difficulties in simulating the internet. IEEE/ACM Trans. Netw. 9, 4 (August 2001), 392-403.

W. Dally and B. Towles, Principles and Practices of Interconnection Networks. Morgan Kaufmann Publishers Inc., 2004.

WRIGHT, C., MESTERY, K., SHAIKH, A., & BAUCKE, S. OpenDaylight: An Open Source SDN for Your OpenStack Cloud. OpenStack Summit Presentations.

Descargas

Archivos adicionales

Publicado

2015-02-28

Cómo citar

Ortiz, J., Londono, J., Novillo, F., Ampuno, A., & Chavez, M. (2015). Determinación de Invariantes en Grandes Centros de Datos Basados en Topología Fat-Tree. Revista Politécnica, 35(1), 91. Recuperado a partir de https://revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/500