Síntesis del Material Cerámico Monofásico Bi0,7La0,3Fe0,9Ti0,1O3,05 y Estudio de su Conductividad Eléctrica

##plugins.themes.bootstrap3.article.main##

Luis Lascano

María Leonor Moyano



Resumen

Resumen: Uno de los materiales ferroicos interesante por sus potenciales aplicaciones es la ferrita de bismuto,BiFeO3, pero su síntesis como fase pura estable y su conductividad eléctrica relativamente alta, son dos problemasaún por superar. El objetivo del presente trabajo fue dopar a la ferrita de bismuto con lantano y titanio de manera talde sintetizar el compuesto monofásico y reducir dicha conductividad con respecto a la ferrita de bismuto no dopada.Para ello, se sintetizó material cerámico de composición Bi0,7La0,3Fe0,9Ti0,1O3,05. La síntesis se realizó mediante elmétodo convencional de reacción en estado sólido. La obtención del compuesto monofásico tuvo lugar a latemperatura de calcinación de 950°C. Mediante espectroscopía de impedancia compleja se determinaron valores deconductividad eléctrica del material en función de la temperatura, así como la energía de activación correspondiente.La conductividad ocurre mediante difusión de iones y sigue la ley de Arrhenius, con una variación del valor de la energía de activación en torno a los 300°C, que sería a su vez la temperatura de Néel del compuesto. La conductividadeléctrica del material dopado es menor que aquella de la ferrita de bismuto para temperaturas entre 180 y 500°C, y laextrapolación a temperatura ambiente proporciona una conductividad del orden de 10^-14 S/cm.

 

Abstract: One interesting ferroic material is bismuth ferrite, BiFeO3, due to its potential applications. However, thesynthesis of an stable pure phase material and its relatively high conductivity, are still two problems to overcome.The aim of this work was to synthesize a single phase bismuth ferrite material doped with lanthanum and titanium toreduce the conductivity compared to the undoped bismuth ferrite. Thus, a ceramic material of the composition Bi0,7La0,3Fe0,9Ti0,1O3,05 was synthesized by a conventional solid state reaction with a calcination temperature of 950°C. The electrical conductivity as a function of temperature of the obtained phase pure material as well as thecorresponding activation energy were determined by complex impedance spectroscopy. The conductivity occurs bydiffusion of ions and follows the Arrhenius law, with a variation of  the activation energy at around 300 °C, which isat the same time the Néel temperature of the compound. The electrical conductivity of the doped material is lowerthan that of undoped bismuth ferrite at temperatures between 180 and 500 °C, and the extrapolation to roomtemperature provides a conductivity in the order of 10 S/cm. -14


Descargas

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografías de los autores/as

Luis Lascano, Departamento de Física, EPN

Luis Lascano Lascano. Doctorado en Física de Materiales, Universidad Autónoma de Madrid e Instituto de Cerámica y Vidrio, España. Físico,Escuela Politécnica Nacional (EPN), Quito. Profesor Principal del Departamento de Física de la EPN. Miembro del Grupo de investigación en Física de la Materia Condensada. Línea de investigación: Materiales Electrocerámicos. Trabaja en proyectos relacionados con:Materiales cerámicos piezoeléctricos, Materiales ferroeléctricosrelaxores, Materiales multiferroicos, Síntesis por métodos químicos y caracterización de materiales electrocerámicos.


María Leonor Moyano, Departamento de Física, EPN

María Leonor Moyano Moyano. Nació el 25 de agosto de 1987 en Quito - Ecuador, estudió la primaria y secundaria en la institución Fe y Alegría, donde mostró aptitud para la Ciencia. Su sestudios superiores los realizó en la Escuela Politécnica Nacional del Ecuador y obtuvo el Título de Físico. Ha trabajado ampliamente en las relaciones de la educación a nivel secundario y universitario y,actualmente, es profesora en el colegio Sagrados Corazones - Centro en Quito.


Citas

Bernardo, M., Jardiel, T., Peiteado, M., & Caballero, A. (2016). Metaestable nature of donor-doped BiFeO obtained by mechanochemical synthesis. Journal of the Ceramic Society of Japan 124(1), 92-97. 3

Bernardo M. (2014). Synthesis, microstructure and properties of BiFeO3 - based multiferroic materials: A review. Bol.Soc.Esp.Cerám.Vidrio 53 (1), 1-14.

Bernardo M., Jardiel T., Peiteado M., Caballero A., &Villegas M. (2011). Sintering and microstructural characterization of W6+, Nb 5+

ironsubstituted BiFeO.Journal of Alloys and Compounds 509, 7290-7296.

Catalan G., & Scott J. (2009). Physics and Applications of Bismuth Ferrite. 3 Advance Materials 21, 2463-2485.

Ederer C., & Spaldin N. (2005). Influence of strain and oxygen vacancies on the magnetoelectric properties of multiferroic bismuth ferrite. Physical Review B 71, 224103.

Fiebig M. (2005). Revival of the magnetoelectric effect. Appl. Phys. 38, R123.

Gupta S., Tomar M., James A., & Gupta V. (2014). Ce-doped bismuth ferrite thin films with improved electrical and functional properties. J. Mater Sci. 49, 5355-5364.

Jun, Y., Moon, W., Chang, C., Kim, H., Ryu, H.S., Kim, J., Kim, K., & Hong, S. (2005). Effects of Nb-doping on electric and magnetic properties in multi-ferroic BiFeO ceramics. Solid State Communications 135,133-137. 3

Karpinsky, D., Troyanchuk, I., Sikolenko, V., V. Efimov, V., & Kholkin, A. (2013). Electromechanical and magnetic properties of BiFeO3-LaFeO3CaTiO3 ceramics near ther hombohedral-orthorhombic

phase boundary.

J. Appl. Phys. 113, 187218

Kubel F. & Schmid H. (1990). Structure of a Ferroelectric and Ferroelastic Monodomain Crystal of the Perovskite BiFeO . Acta Crystallographica B., Structural Science, B46 (6),698-702. 3

Liu J., Li M., Pei L., Yu B., Guo D., & Zhao X. (2014). Effect of Ce doping on the microstructure and electrical properties of BiFeO

thin films prepared by chemical solution deposition. J. Phys. D: Appl. Phys. 42(11),115409.

Moulson, A.J., & Herbert, J.M. (2003). Electroceramics. West Sussex,

England: Wiley.

Nan, Ce-W., Bichurin, M., Dong, S., Viehland, D., & Srinivasan, G. (2008). Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 103, 031101.

Perejón A., Gil-González E., Sánchez-Jiménez, P., Criado, J.M., & Pérez Maqueda,L. (2015). Structural, Optical, and Electrical Characterization of Yttrium-Substituted BiFeO3 Ceramics Prepared by Mechanical Activation. Inorg. Chem., 54, 9876−9884.

Perejón A., Masó, N., West, A., Sánchez-Jiménez, P., Poyato, R., Criado, J.M., & Pérez-Maqueda, L.(2013). Electrical Properties of Stoichiometric BiFeO3 Prepared by Mechanosynthesis with Either Conventional or Spark Plasma Sintering. J. Am. Ceram. Soc., 96(4), 1220-1227.

Popov Y. F., Zvezdin A. K., Voro’ev G. F., Kadomstseva A. M., Murashev V. A. &Rakov D. N. (1993). Linear magnetoelectric effect and phase transitions in bismuth ferrite, BiFeO. Jetp Lett. 57, 69-73.

Reetu, Agarwal, A., Sanghi, S., & Ashima. (2011). Rietveld analysis,

dielectric and magnetic properties of Sr and Ti codoped BiFeO3

multiferroic. J. Appl. Phys. 110, 073909.

Reetu, Agarwal, A., Sanghi, S., Ashima, & Ahlawat, N. (2012). Structural transformation and improved dielectric and magnetic properties in Tisubstituted Bi0.8La0.2FeO multiferroics.

J. Phys. D: Appl. Phys. 45,165001. 3

Simões, A., Garcia, F., & Riccardi, C. (2009). Rietveld analysis and electrical properties of lanthanum doped BiFeO3 ceramics. Mater. Chem.Phys., 116 (2), 305-309.

Seda, T., & Hearne G. (2004). Pressure induced Fe intervalence charge transfer and the Fe3+/ Fe2+ + Ti4+3 → Fe ratio in natural ilmenite (FeTiO) minerals. J. Phys.: Condens. Matter 16(15), 2707-2718.

Srivastava, A., Garg, A., & Morrison, F. (2009). Impedance spectroscopy 3 studies on polycrystalline BiFeO thin films on Pt/Si substrates. Journal of Applied Physics 105, 054103. 3

Zhang S., Pang L., Zhang Y., Lu M. & Chen Y. (2006). Preparation, structures, and multiferroic properties of single phase Bi1−x Lax

FeO (x=0-0.40) ceramics. Journal of Applied Physics 100, 114108.