Fibra dietaria en subproductos de mango, maracuyá, guayaba y palmito

##plugins.themes.bootstrap3.article.main##

A. Cruz

M. Guamán

M. Castillo

P. Glorio

R. Martínez



Resumen

Resumen: Los subproductos del procesamiento de alimentos vegetales son fuentes importantes de fibra dietaria y especialmente de la fracción insoluble. El objetivo de este estudio fue determinar la fibra dietaria total, sus fracciones y los componentes mayoritarios de la fracción insoluble en los subproductos de mango (Mangifera indica L, var. Tommy Atkins y Haden), maracuyá (Passiflora edulis, var. Flovicarpa), guayaba (Psidium guajava, var. Red) y palmito (Chamaerops humilis, var. Bactrisgasipaes). La fibra dietaria total y sus fracciones se determinaron por el método enzimático gravimétrico al igual que la obtención de la fracción purificada libre de pectina. La determinación de hemicelulosa A y B se realizó por acidificación ligera y precipitación con etanol respectivamente; la celulosa fue extraída de la fracción de lignocelulosa por tratamiento con permanganato de potasio y la lignina por hidrólisis ácida. El subproducto de guayaba presentó los mayores contenidos de  fibra dietaria total e insoluble (74.00±2.00 y 69.32±0.96  g/100 g materia seca respectivamente), mientras que la fibra dietaria soluble fue mayor en el de mango (15.10±2.20 g/100 g materia seca). El contenido de hemicelulosa estuvo comprendido entre 2.35±0.26 y 25.92±0.53 g/100 g de materia seca; la hemicelulosa B estuvo entre 2.91±1.05 y 5.89±0.25 g/100 g de materia seca. La celulosa fue el componente mayoritario en los subproductos de guayaba (33.54±1.00 g/100 g de materia seca), mientras que la lignina fue el compuesto mayoritario en la semilla y pulpa de maracuyá (28.17±2.07 g/100 g de materia seca). Todos los subproductos estudiados a excepción de la pulpa de maracuyá y mango se mostraron como buena fuente de fibra dietaria insoluble con un contenido superior a 40 g/100 g.

 

Abstract: Byproducts of food processing industries are major sources of dietary fiber, especially of the insoluble fraction. The aim of this study was to determine total dietary fiber and it is fractions, and the principal components in insoluble fraction of dietary fiber from the agroindustrial byproducts of guava (Psidium guajava, var. Red), mango (Mangifera indica L, var. Tommy Atkins y Haden), passion fruit (Passiflora edulis, var. Flovicarpa) and heart of palm (Chamaerops humilis, var. Bactrisgasipaes). A gravimetric enzymatic method was used to obtain the total dietary fiber (soluble and insoluble fraction), its fractions and purified insoluble fiber free of pectin. Hemicellulose A and B were determined by soft acidification and hemicellulose B by precipitation with ethanol; cellulose was extracted from lignocellulose fraction by treatment with potassium permanganate and lignin by acid hydrolysis. Total and insoluble dietary fiber were higher in guava (74.00±2.00 and 69.32±0.96 g/100 g dry matter, respectively). The soluble fiber was majority in the byproducts of mango (15.10±2.20 g/100 g dry matter). The hemicellulose A content was between 2.35±0.26 and 25.92±0.53 g/100 g dry matter; hemicellulose B was between 2.91±1.05 and 5.89±0.25 g/100 g of dry matter. Cellulose was the majority component in the byproducts of guava (33.54±1.00 g/100 g dry matter), while lignin was the main component in seeds and pulp of passion fruit (28.17±2.07 g/100 g dry matter). All byproducts analyzed, except passion fruit pulp and mango pulp, show to be good source of insoluble dietary fiber was higher than 40 g /100 g. dry matter.

 

Descargas

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Citas

Ajila, C. M., Bhat, S. G., & Prasada, U. J. S. (2007). Valuable components of raw and ripe peels from two Indian mango varieties. Food Chemistry, 102(4), 1006-1011. doi: http://dx.doi.org/10.1016/j.foodchem.2006.06.036

Al-Sheraji, S. H., Ismail, A., Manap, M. Y., Mustafa, S., Yusof, R. M., & Hassan, F. A. (2011). Functional properties and characterization of dietary fiber from mangifera pajang kort. Fruit Pulp. Journal of Agricultural and Food Chemistry, 59 (8), 3980-3985. doi: 10.1021/jf103956g

Anderson, J. W., & Bridges, S. R. (1988). Dietary fiber content of selected foods. The American Journal of Clinical Nutrition, 47(3), 440-447.

AOAC (1997). Official Methods of Analysis of AOAC International (16th ed.). Washington, DC: Association of Official Analytical Chemists.

Astuti, T., Warly, L., Jamarun, N., & Evitayani. (2011). The effect of incubation time and level of urea on dry matter, organic matter and crude protein digestibility of passion fruit (Passiflora edulis var. flavicarpa) hulls. Journal of the Indonesian Tropical Animal Agriculture, 36(3), 180-184. doi: http://ejournal.undip.ac.id/index.php/ jitaa/article/view/7496

Bensadón, S., Hervert-Hernández, D., Sáyago-Ayerdi, S., & Goñi, I. (2010). By-Products of Opuntia ficus-indica as a source of antioxidant dietary fiber. Plant Foods for Human Nutrition, 65(3), 210-216. doi: 10.1007/s11130-010-0176-2

Claye, S. S., Idouraine, A., & Weber, C. W. (1996). Extraction and fractionation of insoluble fiber from five fiber sources. Food Chemistry, 57(2), 305-310. doi: http://dx.doi.org/10.1016/0308-8146(95)00250-2

Champ, M., Langkilde, A.-M., Brouns, F., Kettlitz, B., & Le Bail, Y. (2003). Advances in dietary fibre characterisation. Definition of dietary fibre, physiological relevance, health benefits and analytical aspects. Nutrition Research Reviews, 16(1), 71-82. doi: 10.1079/NRR200254

Chau, C.-F., & Huang, Y.-L. (2005). Effects of the insoluble fiber derived from Passiflora edulis seed on plasma and hepatic lipids and fecal output. Molecular Nutrition & Food Research, 49(8), 786-790. doi: 10.1002/mnfr.200500060

Chawla, R., & Patil, G. R. (2010). Soluble dietary fiber. Comprehensive Reviews in Food Science and Food Safety, 9(2), 178-196. doi: 10.1111/j.1541-4337.2009.00099.x

Dhingra, D., Michael, M., Rajput, H., & Patil, R. T. (2012). Dietary fibre in foods: a review, Journal of Food Science and Technology, 49(3), 255-266. doi: 10.1007/s13197-011-0365-5

Djilas, S., Čanadanović-Brunet, J., & Ćetković, G. (2009). By-products of fruits processing as a source of phytochemicals. Chemical Industry & Chemical Engineering Quarterly, 15(4), 191-202.

El-Deek, A., Hamdy, S., Attia, Y., & El-Shahat, A. (2009). Guava by-product meal processed in various ways and fed in differing amounts as a component in laying hen diets. International Journal of Poultry Science, 9(8), 866-874.

Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry, 124(2), 411-421. doi: 10.1016/j.foodchem.2010.06.077

Escudero, E., & Gonzáles, P. (2006). La fibra dietética. Nutrición Hospitalaria, 2(21), 61-72.

Fuentes-Alventosa, J. M., Rodríguez-Gutiérrez, G., Jaramillo-Carmona, S., Espejo-Calvo, J. A., Rodríguez-Arcos, R., Fernández-Bolaños, J., & Jiménez-Araujo, A. (2009). Effect of extraction method on chemical composition and functional characteristics of high dietary fibre powders obtained from asparagus by-products. Food Chemistry, 113(2), 665-671. doi: http://dx.doi.org/10.1016/j.foodchem .2008.07.075

Goñi, I., & Hervert-Hernández, D. (2011). By-Products from plant foods are sources of dietary fibre and antioxidants. Phytochemicals - Bioactivities and Impact on Health (pp. 95-116). Madrid: Universidad Complutense de Madrid.

Grigelmo-Miguel, N., Gorinstein, S., & MartıÌn-Belloso, O. (1999). Characterisation of peach dietary fibre concentrate as a food ingredient. Food Chemistry, 65(2), 175-181. doi: http://dx.doi.org/10.1016/S0308-8146(98)00190-3

Guillon, F., & Champ, M. (2000). Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Research International, 33(3), 233-245. doi: http://dx.doi.org/10.1016/S0963-9969(00)00038-7

Lee, S., Prosky, L., & DeVries, J. (1994). Determination of total, soluble, and insoluble dietary fiber in foods - enzymatic - gravimetric method, MES-TRIS buffer: Collaborative study. Association Official Analytical Chemistry. 75, 395-416.

López, J. F., & Pérez-Alvarez, J. A. (2008). Overview of meat products as functional foods. Technological strategies for functional meat products development, 1-17.

Lousada, J., Miranda, J., Rodríguez, N., Machado, C., & Braga, R. (2005). Consumo e digestibilidade de subprodutos do processamento de frutas em ovinos. Revista Brasileira de Zootecnia, 34(2), 659-669.

Marín, F. R., Soler-Rivas, C., Benavente-García, O., Castillo, J., & Pérez-Alvarez, J. A. (2007). By-products from different citrus processes as a source of customized functional fibres. Food Chemistry, 100(2), 736-741. doi: http://dx.doi.org/10.1016/ j.foodchem.2005.04.040

Martín-Sánchez, A. M., Cherif, S., Ben-Abda, J., Barber-Vallés, X., Pérez-Álvarez, J. A., & Sayas-Barberá, E. (2014). Phytochemicals in date co-products and their antioxidant activity. Fodd Chemistry, 158, 513-520. doi: 10.1016/j.foodchem.2014.02.172

Martínez, R. (2013). Caracterización de la fracción insoluble de fibra dietaria en residuos de café (Coffea arábica L. var. Typica) y cacao (Teobroma cacao L. var. Complejo Nacional por trinitario). M.S. tesis, Univ. La Molina, Lima-Perú.

Martínez, R., Torres, P., Meneses, M. A., Figueroa, J. G., Pérez-Álvarez, J. A., & Viuda-Martos, M. (2012a). Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chemistry, 135(3), 1520-1526. doi: http://dx.doi.org/10.1016/j.foodchem.2012.05.057

Martínez, R., Torres, P., Meneses, M. A., Figueroa, J. G., Pérez-Álvarez, J. A., & Viuda-Martos, M. (2012b). Chemical, technological and in vitro antioxidant properties of cocoa (Theobroma cacao L.) co-products. Food Research International, 49(1), 39-45. doi: http://dx.doi.org/10.1016/j.foodres.2012.08.005

Martínez, R., Torres, P., Meneses, M. A., Figueroa, J. G., Pérez-Álvarez, J. A., & Viuda-Martos, M. (2012c). Coproductos de la industrialización del palmito: Composición química y propiedades tecnológicas. Alimentación, equipos y tecnología, 268, 32-33.

Mertens, D. R. (2003). Challenges in measuring insoluble dietary fiber. Journal of Animal Science, 81(12), 3233-3249. doi:/2003.81123233x

Mildner-Szkudlarz, S., Zawirska-Wojtasiak, R., Szwengiel, A., & Pacyński, M. (2011). Use of grape by-product as a source of dietary fibre and phenolic compounds in sourdough mixed rye bread. International Journal of Food Science & Technology, 46(7), 1485-1493. doi: 10.1111/j.1365-2621.2011.02643.x

Molina, M. E., & Martín, Á. (2007). La fibra dietética procesada como alimento funcional. Offarm, 26(1), 70-77.

Mongeau, R., & Brooks, S. P. J. (2001). "Chemistry and analysis of lignin" en Dietary Fiber. New York: Marcel Dekker, Inc. pp. 321-374.

Monte, W. C., & Maga, J. A. (1980). Extraction and isolation of soluble and insoluble fiber fractions from the pinto bean (Phaseolus vulgaris). Journal of Agricultural and Food Chemistry, 28(6), 1169-1174. doi: 10.1021/jf60232a065

Murthy, P., & Naidu, M. M. (2010). Recovery of Phenolic Antioxidants and Functional Compounds from Coffee Industry By-Products. Food and Bioprocess Technology, 5(3), 897-903. doi: 10.1007/s11947-010-0363-z

Nawirska, A., & Kwaśniewska, M. (2005). Dietary fibre fractions from fruit and vegetable processing waste. Food Chemistry, 91(2), 221-225. doi: http://dx.doi.org/10.1016/j.foodchem.2003.10.005

Nawirska, A., & Uklanska, C. (2008). Waste products from fruit and vegetable processing as potential sources for food enrichment in dietary fibre. Acta Scientlarum Polonorum, 7(2), 35 -42.

O´Donnell, T. H., Deutsch, J., Yungmann, C., Zeitz, A., & Katz, S. H. (2015). New sustainable market opportunities for surplus food: A food system-sensitive methodology (FSSM). Food and Nutrition Sciences, 6 (10), 883-892. doi: 10.4236/fns.2015.610093

Prosky, L., Asp, N., Schweizer, T., DeVries, J., Furda, I., & Lee, S. (1994). Determination of soluble dietary fiber in foods and food products: collaborative study. Europe PubMed Central, 3(77), 690-694.

Raghavendra, S. N., Rastogi, N. K., Raghavarao, K. S. M. S., & Tharanathan, R. N. (2004). Dietary fiber from coconut residue: effects of different treatments and particle size on the hydration properties. European Food Research and Technology, 218(6), 563-567. doi: 0.1007/s00217-004-0889-2

Redondo-Márquez, L. (2002). La fibra terapéutica (2da. ed.). Barcelona: Editorial Glosa.

Rodríguez, K. (2007). Análisis de los polisacáridos y la textura de la pared celular en cultivo en suspensión de Beta vulgaris L., Instituto Politécnico Nacional, Yautepec, Morelos.

Rustad, T., Storrø, I., & Slizyte, R. (2011). Possibilities for the utilisation of marine by-products. International Journal of Food Science & Technology, 46(10), 2001-2014. doi: 10.1111/j.1365-2621.2011.02736.x

Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005). Recent trends in the microbial production, analysis and application of Frucooligosaccharides. Trends in Food Science & Technology, 16(10), 442-457. doi:10.1016/j.tifs.2005.05.003

Saura-Calixto, F. (2010a). Dietary Fiber as a Carrier of Dietary Antioxidants: An Essential Physiological Function. Journal of Agricultural and Food Chemistry, 59(1), 43-49. doi: 10.1021/jf1036596

Saura-Calixto, F. (2010b). "Fibra dietética en la dieta y en alimentos funcionales. Prebióticos" en Alimentos saludables y de diseño específico. Alimentos funcionales. Madrid: Instituto Tomás Pascual Sanz. pp. 97-106.

Schieber, A., Stintzing, F. C., & Carle, R. (2001). By-products of plant food processing as a source of functional compounds - recent developments. Trends in Food Science & Technology, 12(11), 401-413. doi: http://dx.doi.org/10.1016/S0924-2244(02)00012-2

Soto, G., Luna, P., Wagger, M., & Carpio, S. (2002). Descomposición de residuos de cosecha y liberación de nutrimientos en plantaciones de palmito en Costa Rica. Agronomía Costarricense, 26(2), 43-51.

Southgate, D. A. T. (1976). "Determination of Food Carbohydrates". London: Applied Science.

Tosch, S. M., & Yada, S. (2010). Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Research International, 43(2), 450-460. doi: 10.1016/j.foodres.2009.09.005

Ververis, C., Georghiou, K., Danielidis, D., Hatzinikolaou, D. G., Santas, P., Santas, R., & Corleti, V. (2007). Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresource Technology, 98(2), 296-301. doi: http://dx.doi.org/10.1016/j.biortech.2006.01.007

Yapo, B. M., & Koffi, K. L. (2008). The polysaccharide composition of yellow passion fruit rind cell wall: chemical and macromolecular features of extracted pectins and hemicellulosic polysaccharides. Journal of the Science of Food and Agriculture, 88(12), 2125-2133. doi: 10.1002/jsfa.3323