Simulaciones de dinámica molecular del péptido antimicrobiano Bactenecin en las cercanías de una membrana lipídica

##plugins.themes.bootstrap3.article.main##

H Morales

Marco Bayas



Resumen

Resumen.- El comportamiento del péptido catiónico Bactenicin en las cercanías de una membrana lipídica de DPPC fue estudiado con ayuda de simulaciones de dinámica molecular. Como punto de partida, se construyó una estructura de Bactenecin teniendo en cuenta su secuencia de amino ácidos. Esta estructura fue posteriormente minimizada energéticamente considerando la presencia del enlace disulfuro entre los residuos Cys3 y Cys11. La estructura resultante fue equilibrada en una caja de agua por 4 ns a 310 K. La estructura a 2ns fue utilizada para construir el sistema Bactenecin-Membrana, el mismo que fue simulado por 2 ns. La comparación entre las simulaciones muestra que la presencia de la membrana hace que el péptido sea más estable. Además se observa una tendencia del péptido a acercase a la membrana.

 

Abstract.- Molecular dynamics simulations were used to study the behaviour of the cationic peptide Bactenecin in water with and without the presence of a DPPC lipid membrane. As a starting point we built a structure of Bactenecin based on its amino acid sequence. This structure was then energy minimized considering the presence of the disulfide bond between residues Cys3 and Cys11. The resultant structure was equilibrated in a water box for 4 ns a 310 K. The structure at 2ns was used to built the system Bactenecin-Membrane and then simulated for 2 ns at 310 K. Comparison of the simulations showed that the presence of the membrane makes the peptide more stable.

Moreover, it was observed a tendency of the peptide to approach the membrane.

Descargas

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a

H Morales, Departamento de Física

Programa de Maestría en Física

Citas

Rocks, open-source toolkit for real and virtual clusters,

http://www.rocksclusters.org/wordpress, agosto 2011.

C. Appelt, F. Eisenmenger, R. Kuhne, P. Schmieder, and J. Soderhall. Interaction of the antimicrobial peptide cyclo(rrwwrf) with membranes by molecular dynamics simulations. Biophysical Journal, 89:2296-2306, 2005.

K. Brogden. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology, 3:238-250, 2005.

C.Shepherd,H. Vogel, and P. Tieleman. Interactions of the designed antimicrobial peptide mb21 and truncated dermaseptin s3 with lipid bilayers: molecular dynamics simulations. Biochem J, 730:233-243, 2003.

P. Ewald. Die berechnung optischer und elektrostatischer

gitterpotentiale. Ann. Phys., 369:253-287, 1921.

A. Giuliani, G. Pirri, and S.Nicoletto. Antimicrobial peptide: an overview of a promising class of therapeutics. Central European Journal of Biology, 14:1-33, 2007.

Y. Gofman, S. Linserand, A. Rzeszutek, D. Shental- Bechor, S. Funari, N. Ben-Tal, and R. Willumeit. Interaction of an antimicrobial peptide with membranes: Experiments and simulations with nkcs. J. Phys. Chem. B, 114:4230-4237, 2010.

R. Hancock. Cationic peptides: a new source of antibiotics.

Trends in Biotechnology, 16:82-88, 2008.

R. Hancock and D. Chapple. Peptide antibiotics.

Antimicrob. Agents Chemother., 43:1317-1323, 1999.

W. Humphrey, A. Dalke, and K. Schulten. Vmd - visual molecular dynamics. J. Molec. Graphics, 14:33-48, 1996.

H. Jang, B. Ma, H. Woolf, and R. Nussinov. Interaction of protegrin-1 with lipid bilayers: membrane thinning effect. Biophysical Journal, 91:2848-2859, 2006.

S. Kandasamy and R. Larson. Molecular dynamics study of the lung surfactant peptide sp b1 25 with dppc monolayers: Insights into interactions and peptide position and orientation. Biophysical Journal, 88:1577-1592, 2005.

H. Khandelia and Y. Kaznessis. Structure of the

antimicrobial beta-hairpin peptide protegrin-1 in a dlpc lipid bilayer investigated by molecular dynamics simulation. Biochimica et Biophysica Acta, 1768:509-520, 2007.

J. Klauda. Laboratory of molecular and thermodynamic

modeling, university of maryland, http://terpconnect.umd.edu/jbklauda/

research/download.html, Agosto 2011.

A. Langham and Y. Kaznessis. Molecular simulations of antimicrobial peptides. Methods Mol Biol, 618:267-285, 2010.

J. Lee, S.Ham, andW. Im. Beta-hairpin restraint potentials

for calculations of potentials of mean force as a function of beta-hairpin tilt, rotation, and distance. J Comput Chem, 30:1334-1343, 2009.

W. Lee, ST Yang,HJ Kim, SK Lee,HHJung, SY Shin, and JI Kim. Different modes of antibiotic action of homodimeric and monomeric bactenecin, a cathelicidin-derived antibacterial peptide. BMB reports, 42:586-592, 2009.

E. Lindahl and M. Sansom. Membrane proteins: molecular dynamics simulations. Curr. Opin. Struct. Biol., 18:425-431, 2008.

A. Lopez, A. V´azquez, M. Burboa, L. Guti´errez, J. Ruiz, and M. Valdez. Interaction of the cationic peptide bactenecin with phospholip monolayers at the air-water interface: I interaction with 1,2-dipalmitoyl-sn-glycerol-3-phosphatidilcholine. J.

Phys. Chem. B, 113:9802-9810, 2009.

A.B. L´opez-Oyama, P. Taboada, M.G. Burboa, E. Rodr´ıguez, V.Mosquera, andM.A. Valdez. Interaction of the cationic peptide bactenecin with mixed phospholipid monolayers at the air-water interface. J Colloid Interface Sci, 1:279-288, 2011.

C. Lumb, Ju He, Yi Xue, P. Stansfeld, R. Stahelin, T. Kutateladze, and Mark S.P. Sansom. Biophysical and computational studies of membrane penetration by the grp1 pleckstrin homology domain. Structure, 19:1338-1346, 2011.

K. Matsuzaki. Why and how are peptide-lipid interactions

utilized for selfdefense? magainins and tachyplesins as archetypes. Biochim. Biophys. Acta,

:1-10, 1999.

F. Mehrnejad and M. Zarei. Molecular dynamics simulation

study of the interaction of piscidin 1 with dppc bilayers: Structure-activity relationship. Journal of Biomolecular Structure and Dynamics, 27:551-559, 2010.

S. Palma. Peptides as toxin/defensins. Amino Acids, 40:1-4, 2011.

Y. Park and K. Hahm. Antimicrobial peptides (amps): peptide structure andmode of action. J Biochem Mol Biol., 38:507-516, 2005.

A. Pedretti, L. Villa, and G. Vistoli. Vega - an open platform to develop chemo-bio- informatics applications, using plug-in architecture and script programming. J. Comp. Aid.Mol. Des, 18:167-173, 2004.

J. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshi, E. Villa, C. Chipot, R. Skeel, L. Kale, and K. Schulten. Scalable molecular dynamics with namd. Journal of Computational Chemistry, 26:1781-

, 2005.

J. Pimthon, R. Willumeit, A. Lendlein, and D. Hofmann.

Membrane association and selectivity of the antimicrobial peptide nk-2: a molecular dynamics simulation study. J Pept Sci., 15:654-667, 2009.

S.W. Radermacher, V.M. Schoop, and H.J. Schluesener.

Bactenecin, a leukocytic antimicrobial peptide, is cytotoxic to neuronal and glial cells. Journal of Neuroscience Research, 36:657-662, 1993.

P. Raj, T. Karunakaran, and D. Sukumaran. Synthesis,

microbicidal activity, and solution structure of the dodecapeptide from bovine neutrophils. Biopolymers, 53:281-292, 2000.

M. Rizza, P. Dellavalle, R. Narancio, A. Cabrera, and F. Ferreira. Biomolecules as host defense weapons againstmicrobial pathogens. Recent Patents on DNA and Gene Sequences, 15:82-96, 2008.

D. Romeo, B. Skerlavaj,M. Bolognesi, , and R. Gennaro.

Structure and bactericidal activity of an antibiotic dodecapeptide purified frombovine neutrophils. The Journal of Biological Chemistry, 263:9573-9575, 1988.

Y. Shai. Mechanism of the binding, insertion and destabilization phospholipid bilayer membranes by a-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta, 1462:55-70, 1999.

Y. Shai. Mode of action of membrane active antimicrobial peptides. Biopolymers, 66:236-248, 2002.

N. Sitaramand R.Nagaraj. Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim Biophys Acta, 1462:25-94, 1999.

K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopesand I. Vorobyov, and A. D. MacKerell Jr. Charmm general force field: A force field for drug-like molecules compatible with the charmm all-atom additive biological force fields. Journal of Computational Chemistry, 31:671-690, 2010.

V. Vivcharuk and Y. Kaznessis. Free energy profile of the interaction between a monomer or a dimer of protegrin-1 in a specific binding orientation and a model lipid bilayer. J. Phys. Chem. B, 114:2790-2797,

M.Wu. Characterization of Bactenecin: A small antimicrobial

cationic peptide. University of British Columbia. PhD thesis.

M.Wu and R. Hancock. Interaction of the cyclic antimicrobial cationic peptide bactenecin with the outer and cytoplasmic membrane. The Journal of Biological Chemestry, 274:29-35, 1999.

M.Wu, E.Maier, R. Benz, and R.E.W. Hancock. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of escherichia coli. Biochemistry, 38:7235-7242, 1999.

M. Yeaman and N. Yount. Mechanisms of antrimicrobial

peptide action and resistance. Pharmacol Rev, 55:27-55, 2003.

M. Zasloff. Antimicrobial peptides of multicellular organisms. Nature, 415:389-395, 2002.