Synthesis and Characterization of Six Novel Samarium (III) Complexes with L-aspartic Acid, L-glutamic Acid, Glycine and O-phenanthroline, Bipiridile as Ligands

##plugins.themes.bootstrap3.article.main##

E. Cardozo

RR. Contreras

F. Bellandi

A. Lopez-Rivera

J. Avendaño

C. Araque

J. Vielma



Resumen

Resumen: Se sintetizaron dos series diferentes de complejos de samario (III): Sm(o-Phen) (Ln)3 y Sm (bipy) (Ln)3 (n = 1-3; L1 = ácido l-aspártico, L2 = ácido l-glutámico, L3 = glicina) mediante métodos clásicos. Se utilizó una relación molar 3:1 de los ligandos Ln, de o-fenantrolina o de bipiridilo en cada caso. Los espectros UV-Vis muestran bandas agudas cerca de los 190 nm que corresponden al enlace Sm-O de alta energía así como transiciones f→f. Los espectros FT-IR confirman enlaces Sm-O en las señales situadas entre 490 - 450 cm-1. Los análisis de TGA-DTA, EA y MS revelan una buena correlación con la propuesta estructural. Los cálculos computacionales utilizando métodos semiempíricos facilitan algunas propiedades que sirven de guía para el desarrollo de aplicaciones fotoluminiscentes y antibacteriales.

Abstract: Two different series of samarium (III) complexes, Sm (o-Phen) (Ln) 3 and Sm (bipy) (Ln) 3 (n = 1-3; L1 = L-aspartic acid, L2 = L-glutamic acid, L3 = glicine), were synthesized by classic methods. Ligands Ln and o-phenanthroline or bipiridile were used on a molar ratio 3:1 for each compound. UV-Vis reveals sharp signals near 190 nm corresponding to a high energy bond Sm-O and f→f transitions. FT-IR spectra shows itself a band between 490 - 450 cm-1 indicative of Sm-O bond. Analytical analysis of TGA-DTA, EA and MS, resolve structural proposals. Computational calculation using semiempirical methods, show properties as a guide to approach better applications for these compounds like photoluminescence devices and antibacterial drugs.

Descargas

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Citas

. Liu, L. Xu, X. Lou, Z. et al. Luminiscent properties of a novel terbium complex Tb(o-BBA)3(Phen). Journal of Rare Earths. 2006, 21(1): 253 - 256.

. R. Kumar, U. Singh. Molecular structure, photophysical and thermal properties of samarium (III) complexes. Journal of Molecular Structure. 2008. 872: 427 - 434.

. L. Armelao, S. Quici, F. Barigelletti, et al. Design of luminiscent lanthanide complexes: From molecules to highly efficient photoemitting materials. Coordination Chemistry Reviews. 2010. 254: 487 - 505.

. P. Gawryszewska, J. Lisowski. Lanthanide (III) complexes of N4O4 Schiff base macrocycle: Luminescense and formation of heterodinuclear d-f complexes. Inorganica Chimica Acta. 2012. 383: 220 - 229.

. Z. Ahmed, K. Iftikhar. Synthesis, luminescence and NMR studies of lanthanide (III) complexes with hexafluoroacetylacetone and phenanthroline. Part II. Inorganica Chimica Acta. 2012. 392: 165 - 176.

. Z. Piskula, J. Czajka, K. Staninski, et al. Luminescense properties of calcium tungstate activated by lanthanide (III) ions. Journal of Rare Earths. 2014. 32(3): 221 - 225.

. K. Monahan, B. Kumari, G. Rijulal. "Microwave assited synthesis, spectroscopic, thermal and antifungal studies of some lanthanide (III) complexes with a heterocyclic bishydrazone". Journal of Rare Earths. 2008. 26:16 - 21.

. Kremer, C. Torres, J. Dominguez, S. et al. Structure and thermodynamic stability of lanthanide complexes with aminoacids. Coordination Chemistry Reviews. 2005, 249(1): 567 - 590.

. Freire, R. da Costa, N. Rocha, G. et al. Sparkle/AM1 Parameters for the modeling of samarium (III) and promethium (III) complexes. Journal of Chemical Theory and Computation. 2006, 2(1): 64 - 74.

. Freire, R. da Costa, N. Rocha, G. et al. Sparkle/PM3 Parameters for the modeling of samarium (III) and promethium (III) complexes. Journal of Chemical Theory and Computation. 2007, 3(1): 1588 - 1596.

. Hui, Y. Qizhuang, H. Jing, Y. et al. Syntheses, characterization and antibacterial properties of rare earths (Ce3+, Pr3+, Nd3+, Sm3+, Er3+) complexes with L-aspartic acid and o-phenanthroline. Journal of Rare Earths. 2006, 24(1): 4.

. Y. Sun, M. Machala, F. Castellano. "Controlled microwave synthesis of RuII synthons and chromosphores relevant to solar energy conversion". Inorganica Chimica Acta. 2010. 363; 283 - 287.

. Qizhuang, H. Jing, Y. Hui, M. et al. Studies on the spectra and antibacterial properties of rare earth dinuclear complexes with L-phenylalanine and o-phenanthroline. Materials Letters. 2006, 60(1): 317 - 320.

. Woznicka, E. Kopacz, M. Umbreit, M. et al. New complexes of La(III), Ce(III), Pr(III), Nd(III), Sm(III), Eu(III) and Gd(III) ions with morin. Journal of Inorganic Biochemistry. 2007, 101(1): 774 - 782.

. Yan, Z. Tang, Y. Liu, W. et al. Syntheses, characterization and luminiscent properties of lanthanide complex with an unsymmetrical tripodal ligand. Journal of Luminescence. 2008, 128(1): 1394 - 1398.

. Silverstein, R. Bassler, G. Morrill, T. Spectrometric Identification of Organic Compounds. 5th Edition. New York: John Wiley & Sons Inc., 1991.

. D. Evans, A. Hoveyda. Samarium-Catalyzed Intramolecular Tischenko Reduction of β-Hydroxy Ketones. A stereoselective Approach to the Synthesis of Differentiated Anti 1,3-Diol Monoesters. Journal of American Chemical Society. 1990. 121: 6447 - 6449.

. D. Evans, S. Nelson, M. Gagné et al. A chiral Samarium-Based Catalyst for the Asymmetric Meerwein-Ponndorf-Verley Reduction. Journal of American Chemical Society. 1993. 115: 9800 - 9801.

. D. Chen, J. Zou, W. Xiang. Synthesis, crystal structure and catalytic property of a samarium complexes with [Hpytza = 5-(3-pyridyl) tetrazole-2-acetic acid]. Inorganic Chemistry Communications. 2014. 40: 35 - 38