Síntesis de ZnO Nanoestructurado con Propiedades Luminiscentes
##plugins.themes.bootstrap3.article.main##
Resumen
Resumen: En el presente trabajo se ha sintetizado óxido de zinc por evaporación, condensación y oxidación de Znmetálico a presión atmosférica en un reactor tubular de cuarzo a temperaturas entre 900 °C y 1100 °C, con unextremo que permita la inyección de argón y oxígeno para lograr cristales puros no dopados de ZnO, y paradeterminar su influencia en las características morfológicas y luminiscentes de las partículas sintetizadas. Se haencontrado predominancia de morfologías tipo tetrápodos con brazos piramidales y de dimensiones de pocascentenas de nanómetros hasta varias micras. Las partículas sintetizadas se caracterizaron mediante difracción derayos X (DRX), Microscopía Electrónica de Barrido (MEB), Microscopía Electrónica de Transmisión (MET), y suspropiedades ópticas se analizaron por catodoluminiscencia (CL) y fotoluminiscencia (PL). Las imágenesmonocromáticas adquiridas por catodoluminisciencia logran mostrar cuál región de las partículas es responsable delos picos de emisión, lo que permite focalizar el estudio en la emisión de interés.
Abstract: Zinc oxide is synthesized by evaporation, condensation and oxidation of Zn metal at atmosphericpressure in a quartz tubular reactor at temperatures between 900 °C and 1100 °C with one end that allows theinjection of argon and oxygen to achieve pure crystals undoped ZnO and determine the influence on themorphological and luminescent characteristics of the synthesized particles. It has been found predominance oftetrapod type with pyramidal morphologies and dimensions arms few hundred nanometers to several microns. Thesynthesized particles have been characterized by X ray diffraction (XRD), scanning electronic microscopy (SEM),transmission electronic microscopy (TEM) and its optical properties have been analyzed by cathodoluminescence(CL) and photoluminescence (PL). Monochrome images acquired by catodoluminiscence region may show whatparticles region are responsible for the emission peaks, allowing the study to focus on the issue of interest.
Descargas
Descargas
Detalles del artículo
Citas
Al Rifai, S. a., & Domashevskaya, E. P. (2013). The synthesis and optical
properties of different zinc oxide nanostructures. Russian Journal of
Physical Chemistry A, 87(13), 2246-2252.
http://doi.org/10.1134/S0036024413130037
Aoki, T., Hatanaka, Y., & Look, D. C. (2000). ZnO diode fabricated by
excimer-laser doping. Applied Physics Letters, 76(22), 3257.
http://doi.org/10.1063/1.126599
Auret, F. D., Goodman, S. A., Legodi, M. J., Meyer, W. E., & Look, D. C.
(2002). Electrical characterization of vapor phase grown single crystal ZnO. Appl. Phys. Lett., 1340. http://doi.org/10.1063/1.1452781
Baruah, S., & Dutta, J. (2009). Hydrothermal growth of ZnO nanostructures. Science and Technology of Advanced Materials, 10(1), 013001. http://doi.org/10.1088/1468-6996/10/1/013001
Chen, Y. X., Lewis, M., & Zhou, W. L. (2005). Zno nanostructures
fabricated through a double-tube vapor-phase transport synthesis. Journal of Crystal Growth, 282(1-2), 85-93. http://doi.org/10.1016/j.jcrysgro.2005.04.087
Dupius, R. D. (1997). Epitaxial growth of III-V nitride semiconductors by
metalorganic chemical vapor deposition. Journal of Crystal Growth, 178,
-73.
Guaño, S. E. (2007). Nanoestruturas de ZnO Altamente Luminescentes :
Síntesis y caracterización. PUC-Rio.
Hongsith, N., Chairuangsri, T., Phaechamud, T., & Choopun, S. (2009).
Growth kinetic and characterization of tetrapod ZnO nanostructures. Solid State Communications, 149(29-30), 1184-1187.
http://doi.org/10.1016/j.ssc.2009.04.029
Kale, R. B., & Lu, S.-Y. (2013). Hydrothermal growth and characterizations of dandelion-like ZnO nanostructures. Journal of Alloys and Compounds, 579, 444-449. http://doi.org/10.1016/j.jallcom.2013.05.118
Karthika, K., & Ravichandran, K. (2015). Enhancing the magnetic and
antibacterial properties of ZnO nanopowders through Mn+Co doping.
Ceramics International, 41(6), 7944-7951.
http://doi.org/10.1016/j.ceramint.2015.02.135
Katsarakis, N., Bender, M., Cimalla, V., Gagaoudakis, E., & Kiriakidis, G.
(2003). Ozone sensing properties of DC-sputtered, c-axis oriented ZnO films at room temperature. Sensors and Actuators B: Chemical, 96(1-2), 76-81. http://doi.org/10.1016/S0925-4005(03)00488-X
Keller, S., & Denbaars, S. P. (2003). Metalorganic chemical vapor
deposition of group III nitrides - a discussion of critical issues. Journal of Crystal Growth, 248, 479-486.
Kim, H. -s., Brueckner, E., Song, J., Li, Y., Kim, S., Lu, C., … Rogers, J. A.
(2011). Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting. Proceedings of the National Academy of Sciences, 108(25), 10072-10077. http://doi.org/10.1073/pnas.1102650108
Könenkamp, R., Word, R. C., & Godinez, M. (2005). Ultraviolet
Electroluminescence from ZnO/Polymer Heterojunction Light-Emitting
Diodes. Nano Letters, 5(10), 2005-2008. http://doi.org/10.1021/nl051501r
Li, L., Zhai, T., Bando, Y., & Golberg, D. (2012). Recent progress of onedimensional ZnO nanostructured solar cells. Nano Energy, 1(1), 91-106. http://doi.org/10.1016/j.nanoen.2011.10.005
Liao, L., Liu, D. H., Li, J. C., Liu, C., Fu, Q., & Ye, M. S. (2005). Synthesis
and Raman analysis of 1D-ZnO nanostructure via vapor phase growth.
Applied Surface Science, 240(1-4), 175-179. http://doi.org/10.1016/j.apsusc.2004.06.053
Liu, B., & Zeng, H. C. (2003). Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. Journal of the American Chemical Society, 125(15), 4430-1. http://doi.org/10.1021/ja0299452
Liu, C., Li, H., Jie, W., Zhang, X., & Yu, D. (2006). Preparation of ZnO
cluster and rod-like whiskers through hydrothermal methods. Materials
Letters, 60(11), 1394-1398. http://doi.org/10.1016/j.matlet.2005.11.035
Lupan, O., Pauporté, T., & Viana, B. (2010). Low-Voltage UVElectroluminescence from ZnO-Nanowire Array/p-GaN Light-Emitting
Diodes. Advanced Materials, 22(30), 3298-3302. http://doi.org/10.1002/adma.201000611
Manufactured Nanomaterials and Sunscreens. (2009). Friends of the Earth, 2-9.
Meulenkamp, E. A. (1998). Synthesis and Growth of ZnO Nanoparticles. J. Phys. Chem. B, 5647(98), 5566-5572.
Meyer, B. K., Alves, H., Hofmann, D. M., Kriegseis, W., Forster, D.,
Bertram, F., … Rodina, A. V. (2004). Bound exciton and donor - acceptor
pair recombinations in ZnO. Phys. Stat. Sol. (b), 260(2), 231-260.
http://doi.org/10.1002/pssb.200301962
Monticone, S. (1998). Complex Nature of the UV and Visible Fluorescence
of Colloidal ZnO Nanoparticles. J. Phys. Chem. B, 5647(97), 2854-2862.
Natsume, Y., & Sakata, H. U. (2000). Zinc oxide films prepared by sol-gel
spin-coating. Thin Solid Films, (August 1999), 30-36.
Ohyama, M. ; et all. (1997). Sol-Gel preparation of ZnO Film with extremely prferred orientation along (002) plane from zinc acetate solution. Thin Solid Films, 306, 78-85.
Olsson, E. (1985). The Microestructure of a ZnO varistor material. J. Mater. ScI., 4091-4098.
U., Alivov, Y. I., Liu, C., Teke, a , S., … H. (2005). A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 98(4), 041301. http://doi.org/10.1063/1.1992666
Pearton, S. (2005). Recent progress in processing and properties of ZnO.
Progress in Materials Science, 50(3), 293-340.
http://doi.org/10.1016/j.pmatsci.2004.04.001
Vanheusden, K., Seager, C. H., Warren, W. L., Tallant, D. R., & Voigt, J. A.
(1996). Correlation between photoluminescence and oxygen vacancies in
ZnO phosphors. Appl. Phys. Lett., 68(November 1995), 403-405.
Verghese, P. M., & Clarke, D. R. (2000). Piezoelectric contributions to the
electrical behavior of ZnO varistors. Journal of Applied Physics, 87, 4430.
http://doi.org/10.1063/1.373088
Yan, H. ; et. all. (2003). Morphogenesis of One-Dimensional ZnO. Adv.
Mater., 15(5), 402-405.
Zhu, Z., Zhou, J., Liu, G., & Jiang, Y. (2010). Growth of ZnO sub-millimeter crystals by microwave heating. Journal of Wuhan University of Technology- Mater. Sci. Ed., 25(1), 94-98. http://doi.org/10.1007/s11595-010-1094-8