Estudio de Mezclas Ácido Poliláctico – Almidón de Achira Compatibilizadas con Polivinil Alcohol

##plugins.themes.bootstrap3.article.main##

Pamela Molina

Gabriela Silva

Vladimir Valle

María-Belén Aldás

Erick Proaño


Palabras clave:
polylactic acid, native starch, polyvinyl alcohol, biodegradability, compatibilizer Ácido poliláctico, almidón nativo, polivinil alcohol, biodegradabilidad, compatibilizante

Resumen

Se prepararon mezclas ácido poliláctico (PLA) – almidón de achira empleando polivinil alcohol (PVA) y glicerol como compatibilizante y plastificante, respectivamente. Las mezclas fueron caracterizadas en términos de espectroscopia infrarroja por transformadas de Fourier (FTIR), calorimetría diferencial de barrido (DSC), y propiedades mecánicas. Las superficies de fractura obtenidas del ensayo de tensión fueron evaluadas por medio de microscopía electrónica de barrido (SEM). Adicionalmente, se determinó la biodegradabilidad de las mezclas por medio de ensayos en suelo natural, vermicomposteo, así como también en condiciones aerobias y anaerobias. De acuerdo con los resultados, el PVA incrementó la resistencia a la tensión, elongación a la rotura y produjo una disminución en el módulo de Young. Las imágenes SEM exhibieron superficies rugosas con gránulos de almidón. Adicionalmente, los resultados de DSC evidenciaron un solo valor de Tg, muy cercana a la Tg de los componentes solos; en tanto que los espectros FTIR sugirieron la presencia de enlace hidrógeno entre PLA y almidón. Finalmente, los resultados de vermicomposteo revelaron un alto nivel de degradación de las mezclas PLA – almidón de achira.


 

Descargas

Descargas

Los datos de descargas todavía no están disponibles.




Detalles del artículo

Citas

Ahmed, K., McLeod, M., Nézivar, J., & Giuliani, A. (2010). Fourier transform infrared and near-infrared spectroscopic methods for the detection of toxic Diethylene Glycol (DEG) contaminant in glycerin based cough syrup. Spectroscopy, 24(6), 601–608. https://doi.org/10.3233/SPE-2010-0482

Ahmed, T., Shahid, M., Azeem, F., Rasul, I., Shah, A. A., Noman, M., Hameed, A., Manzoor, N., Manzoor, I., & Muhammad, S. (2018). Biodegradation of plastics: current scenario and future prospects for environmental safety. Environmental Science and Pollution Research, 25(8), 7287–7298. https://doi.org/10.1007/s11356-018-1234-9

Akrami, M., Ghasemi, I., Azizi, H., Karrabi, M., & Seyedabadi, M. (2016). A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydrate Polymers, 144, 254–262. https://doi.org/10.1016/j.carbpol.2016.02.035

Alcalá, J., Llanes, L. M., Mateo, A. M., & Salán, M. N. (2002). Fractura de materiales (M. J. Anglada (ed.); First). Edicions UPC.

Altayan, M. M., Al Darouich, T., & Karabet, F. (2017). On the Plasticization Process of Potato Starch: Preparation and Characterization. Food Biophysics, 12(4), 397–403. https://doi.org/10.1007/s11483-017-9495-2

Altayan, M. M., Al Darouich, T., & Karabet, F. (2021). Thermoplastic starch from corn and wheat: a comparative study based on amylose content. Polymer Bulletin, 78(6), 3131–3147. https://doi.org/10.1007/s00289-020-03262-9

Andrade, M., Tapia, D., & Menegalli, F. (2012). Physical-chemical, thermal, and functional properties of achira (Canna indica L.) flour and starch from different geographical origin. Starch, 64(5), 348–358. https://doi.org/10.1002/star.201100149

Arana, J. L., & González, J. J. (2002). Mecánica de Fractura (First). Servicio Editorial de la Universidad del País Vasco.

Avérous, L., & Pollet, E. (2012). Biodegradable Polymers. En L. Avérous & E. Pollet (Eds.), Environmental Silicate Nano-Biocomposites (First, pp. 13–39). Springer-Verlag. https://doi.org/10.1007/978-1-4471-4108-2_2

Aydin, A. A., & Ilberg, V. (2016). Effect of different polyol-based plasticizers on thermal properties of polyvinyl alcohol:starch blends. Carbohydrate Polymers, 136, 441–448. https://doi.org/10.1016/j.carbpol.2015.08.093

Benjumea, P. N., Agudelo, J. R., & Rios, L. A. (2009). Biodiésel: Producción, calidad y caracterización (First). Editorial Universidad de Antoquia.

Brdlík, P., Boruvka, M., Behálek, L., & Lenfeld, P. (2021). Biodegradation of Poly (Lactic Acid) Biocomposites under Controlled Composting Conditions and Freshwater Biotope. Polymers, 13(4), 594.

Chen, Y., Cao, X., Chang, P., & Huneault, M. (2008). Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydrate Polymers, 73(1), 8–17. https://doi.org/10.1016/j.carbpol.2007.10.015

Colonna, P., & Buleon, A. (2010). Thermal transitions of starches. En A. Bertolini (Ed.), Starches. Characterization, Properties, and Applications (First, pp. 71–102). CRC Press Taylor & Francis Group. https://doi.org/10.1201/9781420080247-9

Correa, A. C., Carmona, V. B., Simao, J. A., Capparelli Mattoso, L. H., & Marconcini, J. M. (2017). Biodegradable blends of urea plasticized thermoplastic starch (UTPS) and poly(e-caprolactone) (PCL): Morphological, rheological, thermal and mechanical properties. Carbohydrate Polymers, 167, 177–184. https://doi.org/https://doi.org/10.1016/j.carbpol.2017.03.051

Da Róz, A. L., Carvalho, A. J. F., Gandini, A., & Curvelo, A. A. S. (2006). The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydrate Polymers, 63(3), 417–424. https://doi.org/10.1016/j.carbpol.2005.09.017

de M. Teixeira, E., Curvelo, A. A. S., Correa, A. C., Marconcini, J. M., Glenn, G. M., & Mattoso, L. H. C. (2012). Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Industrial Crops and Products, 37(1), 61–68. https://doi.org/https://doi.org/10.1016/j.indcrop.2011.11.036

Djonlagic, J., & Nikolic, M. S. (2011). Biodegradable Polyesters: Synthesis and Physical Properties. En S. Sharma & A. Mudhoo (Eds.), A Handbook of Applied Biopolymer Technology: Synthesis, Degradation and Applications (First, pp. 149–196). Royal Society of Chemistry. https://doi.org/10.1039/9781849733458-00149

Esmaeili, M., Pircheraghi, G., Bagheri, R., & Altstadt, V. (2019). Poly(lactic acid)/coplasticized thermoplastic starch blend: Effect of plasticizer migration on rheological and mechanical properties. Polymers for Advanced Technologies, 30(4), 839–851. https://doi.org/10.1002/pat.4517

Espín, S., Villacrés, E., & Brito, B. (2004). Caracterización Físico-Química, Nutricional y Funcional de Raíces y Tubérculos Andinos. En V. Barrera, C. Tapia, & A. Monteros (Eds.), Raíces y Tubérculos Andinos: Alternativas para la conservación y uso sostenible en el Ecuador (Fisrt, p. 30). INIAP/CIP/COSUDE. http://181.112.143.123/bitstream/41000/2827/1/iniapsc322est.pdf

Funabashi, M., Ninomiya, F., & Kunioka, M. (2007). Biodegradation of polycaprolactone powders proposed as reference test materials for international standard of biodegradation evaluation method. Journal of Polymers and the Environment, 15(1), 7–17. https://doi.org/10.1007/s10924-006-0041-4

Garlotta, D. (2001). A literature review of poly(lactic acid). Journal of Polymers and the Environment, 9(2), 63–84. https://doi.org/10.1023/A:1020200822435

Gu, J.-D. (2017). Biodegradability of plastics: the pitfalls. Applied Environmental Biotechnology, 2(1), 59–61. https://doi.org/10.26789/aeb.2017.01.008

Hakkarainen, M. (2002). Aliphatic polyesters: Abiotic and biotic degradation and degradation products. Advances in Polymer Science, 157, 113–138. https://doi.org/10.1007/3-540-45734-8_4

Karamanlioglu, M., Preziosi, R., & Robson, G. D. (2017). Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): A review. Polymer Degradation and Stability, 137(1), 122–130. https://doi.org/10.1016/j.polymdegradstab.2017.01.009

Kaseem, M., Hamad, K., & Deri, F. (2013). Slit die rheology of thermoplastic starch during extrusion process. International Journal of Plastics Technology, 17(1), 51–60. https://doi.org/10.1007/s12588-013-9044-x

Ke, T., & Sun, X. S. (2003). Starch, Poly(lactic acid), and Poly(vinyl alcohol) Blends. Journal of Polymers and the Environment, 11(1), 7–14. https://doi.org/10.1023/A:1023875227450

Koh, J. J., Zhang, X., & He, C. (2018). Fully biodegradable Poly(lactic acid)/Starch blends: A review of toughening strategies. International Journal of Biological Macromolecules, 109(1), 99–113. https://doi.org/10.1016/j.ijbiomac.2017.12.048

Lim, R., Kiew, P. L., Lam, M. K., Yeoh, W. M., & Ho, M. Y. (2021). Corn starch/PVA bioplastics—The properties and biodegradability study using Chlorella vulgaris cultivation. Asia-Pacific Journal of Chemical Engineering, 16(3). https://doi.org/10.1002/apj.2622

Lu, D. R., Xiao, C. M., & Xu, S. J. (2009). Starch-based completely biodegradable polymer materials. Express Polymer Letters, 3(6), 366–375. https://doi.org/10.3144/expresspolymlett.2009.46

Lv, S., Zhang, Y., Gu, J., & Tan, H. (2017). Biodegradation behavior and modelling of soil burial effect on degradation rate of PLA blended with starch and wood flour. Colloids and Surfaces B: Biointerfaces, 159(1), 800–808. https://doi.org/10.1016/j.colsurfb.2017.08.056

Lv, S., Zhang, Y., Gu, J., & Tan, H. (2018). Physicochemical evolutions of starch/poly (lactic acid) composite biodegraded in real soil. Journal of Environmental Management, 228, 223–231. https://doi.org/10.1016/j.jenvman.2018.09.033

Mansur, H., Sadahira, C., Souza, A., & Mansur, A. (2008). FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering C, 28(4), 539–548. https://doi.org/10.1016/j.msec.2007.10.088

Martin, O., & Avérous, L. (2001). Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems. Polymer, 42(14), 6209–6219. https://doi.org/10.1016/S0032-3861(01)00086-6

Niaounakis, M. (2014). Biopolymers: Processing and Products. En PDL Handbook Series (First). William Andrew, Elsevier Inc. https://doi.org/10.1016/C2013-0-09982-3

Orozco, V. H., Brostow, W., Chonkaew, W., & López, B. L. (2009). Preparation and Characterization of Poly(Lactic Acid)-g-Maleic Anhydride + Starch Blends. Macromolecular Symposia, 277(1), 69–80. https://doi.org/10.1002/masy.200950309

Pantani, R., & Sorrentino, A. (2013). Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polymer Degradation and Stability, 98(5), 1089–1096. https://doi.org/10.1016/j.polymdegradstab.2013.01.005

Pujari, R. (2021). Ageing performance of biodegradable PLA for durable applications (Doctoral dissertation, Rochester Institute of Technology).

Raj B, Somashekar R. (2004). Structure–property relation in polyvinyl alcohol/starch composites, Journal of Applied Polymer Science, 91(1), 630-635.

Rozsa, C., Dupeyrón, D., Galego, N., Cyras, V. P., & Vázquez, A. (2004). Miscibilidad de mezclas poliméricas de polihidroxialcanoatos. Revista Iberoamericana de Polímeros, 5(2), 55–66.

Rudeekit Y, Siriyota P, Intaraksa P, Chaiwutthinan P, Tajan M, Leejarkpai T. (2012). Compostability and Ecotoxicity of Poly (lactic acid) and Starch Blends, Advanced Materials Research, 506, 323-326.

Rudnik, E., & Briassoulis, D. (2011). Comparative Biodegradation in Soil Behaviour of two Biodegradable Polymers Based on Renewable Resources. Journal of Polymers and the Environment, 19(1), 18–39. https://doi.org/10.1007/s10924-010-0243-7

Ruiz, M., Pastor, K., & Acevedo, A. (2013). Biodegradabilidad de Artículos Desechables en un Sistema de Composta con Lombriz. Información Tecnológica, 24(2), 47–56. https://doi.org/10.4067/S0718-07642013000200007

Russo, M. A., O’Sullivan, C., Rounsefell, B., Halley, P. J., Truss, R., & Clarke, W. P. (2009). The anaerobic degradability of thermoplastic starch: Polyvinyl alcohol blends: Potential biodegradable food packaging materials. Bioresource Technology, 100(5), 1705-1710.

Sabbah, M., & Porta, R. (2017). Plastic Pollution and the Challenge of Bioplastics. Journal of Applied Biotechnology & Bioengineering, 2(3), 111. https://doi.org/10.15406/jabb.2017.02.00033

Sharma, S., Majumdar, A., & Butola, B. S. (2021). Tailoring the biodegradability of polylactic acid (PLA) based films and ramie- PLA green composites by using selective additives. International Journal of Biological Macromolecules, 181, 1092–1103. https://doi.org/10.1016/j.ijbiomac.2021.04.108

Shi, Q., Chen, C., Gao, L., Jiao, L., Xu, H., & Guo, W. (2011). Physical and degradation properties of binary or ternary blends composed of poly (lactic acid), thermoplastic starch and GMA grafted POE. Polymer Degradation and Stability, 96(1), 175–182. https://doi.org/10.1016/j.polymdegradstab.2010.10.002

Shirai, M. A., Olivato, J. B., Demiate, I. M., Müller, C. M. O., Grossmann, M. V. E., & Yamashita, F. (2016). Poly(lactic acid)/thermoplastic starch sheets: Effect of adipate esters on the morphological, mechanical and barrier properties. Polimeros, 26(1), 66–73. https://doi.org/10.1590/0104-1428.2123

Silva, M., Molina-Sánchez, P., Aldás, M., Valle-Alvarez, V. (2018). Biopolymers based on polylactic acid and starch: an alternative for the preservation of the environment. DYNA, 93(6). 581. https://doi.org/10.6036/8917

Smits, A. L. M., Kruiskamp, P. H., van Soest, J. J. G., & Vliegenthart, J. F. G. (2003). Interaction between dry starch and plasticisers glycerol or ethylene glycol, measured by differential scanning calorimetry and solid state NMR spectroscopy. Carbohydrate Polymers, 53(4), 409–416. https://doi.org/https://doi.org/10.1016/S0144-8617(03)00119-X

Soares, F. C., Yamashita, F., Müller, C. M. O., & Pires, A. T. N. (2013). Thermoplastic starch/poly(lactic acid) sheets coated with cross-linked chitosan. Polymer Testing, 32(1), 94–98. https://doi.org/10.1016/j.polymertesting.2012.09.005

Thilagavathi, S., Gomathi, V., & Kumar, K. (2018). An approach to Low density polyethylene (LDPE) biodegradation by Xylaria sp. from termite garden. Journal of Pharmacognosy and Phytochemistry, 7(2), 2408–2411.

UNEP. (2018). Exploring the potential for adopting alternative materials to reduce marine plastic litter (First). United Nations Environment Programme (UNEP).

Wang, N., Yu, J., Chang, P. R., & Ma, X. (2008). Influence of formamide and water on the properties of thermoplastic starch/poly(lactic acid) blends. Carbohydrate Polymers, 71(1), 109–118. https://doi.org/10.1016/j.carbpol.2007.05.025

Ning W., Xingxiang Z., Na H., & Jianming F. (2010). Effects of Water on the Properties of Thermoplastic Starch Poly(lactic acid) Blend Containing Citric Acid. Journal of Thermoplastic Composite Materials, 23(1), 19–34. https://doi.org/10.1177/0892705708096549

Webb, H. K., Arnott, J., Crawford, R. J., & Ivanova, E. P. (2013). Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers, 5(1), 1–18. https://doi.org/10.3390/polym5010001

Wilfred, O., Tai, H., Marriott, R., Liu, Q., Tverezovskiy, V., Curling, S., ... & Wang, W. (2018). Biodegradation of Polyactic Acid and starch composites in compost and soil. International Journal of Nano Research, 1(2), 1-11.

Wittaya, T. (2012). Rice Starch-Based Biodegradable Films: Properties Enhancement. En A. A. Eissa (Ed.), Structure and Function of Food Engineering (First, pp. 103–134). InTech. https://doi.org/10.5772/47751

Xiao, L., Wang, B., Yang, G., & Gauthier, M. (2012). Poly(Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications. En D. Ghista (Ed.), Biomedical Science, Engineering and Technology (First, pp. 247–282). InTech. https://doi.org/10.5772/23927

Xiaofei, M., Jiugao, Y., & Jin, F. (2004). Urea and formamide as a mixed plasticizer for thermoplastic starch. Polymer International, 53(11), 1780–1785. https://doi.org/10.1002/pi.1580

Xiong, Z., Li, C., Ma, S., Feng, J., Yang, Y., Zhang, R., & Zhu, J. (2013). The properties of poly(lactic acid)/starch blends with a functionalized plant oil: Tung oil anhydride. Carbohydrate Polymers, 95(1), 77–84. https://doi.org/10.1016/j.carbpol.2013.02.054

Xiong, Z., Yang, Y., Feng, J., Zhang, X., Zhang, C., Tang, Z., & Zhu, J. (2013). Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil. Carbohydrate Polymers, 92(1), 810–816. https://doi.org/10.1016/j.carbpol.2012.09.007

Yang, S., Madbouly, S. A., Schrader, J. A., Srinivasan, G., Grewell, D., McCabe, K. G., Graves, W. R. (2015). Characterization and biodegradation behavior of bio-based poly(lactic acid) and soy protein blends for sustainable horticultural applications. Green Chemistry, 17(1), 380–393. https://doi.org/10.1039/c4gc01482k

Yew, G., Mohd Yusof, A., Mohd Ishak, Z., & Ishiaku, U. (2005). Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites. Polymer Degradation and Stability, 90(3), 488–500. https://doi.org/10.1016/j.polymdegradstab.2005.04.006

Zeng, J. B., Li, K. A., & Du, A. K. (2015). Compatibilization strategies in poly(lactic acid)-

Park, J. W., Im, S. S., Kim, S. H., & Kim, Y. H. (2000). Biodegradable polymer blends of poly(L-lactic acid) and gelatinized starch. Polymer Engineering and Science, 40(12), 2539–2550. https://doi.org/10.1002/pen.11384

Patil, S., Bharimalla, A. K., Mahapatra, A., Dhakane-Lad, J., Arputharaj, A., Kumar, M., … Kambli, N. (2021). Effect of polymer blending on mechanical and barrier properties of starch-polyvinyl alcohol based biodegradable composite films. Food Bioscience, 44, https://doi.org/10.1016/j.fbio.2021.101352

Plastic Films in Food Packaging: Materials, Technology and Applications. (2012). En S. Ebnesajjad (Ed.), PDL Handbook Series (First). William Andrew, Elsevier Inc. https://doi.org/10.1016/C2012-0-00246-3

Popescu, M. C., Dogaru, B. I., Goanta, M., & Timpu, D. (2018). Structural and morphological evaluation of CNC reinforced PVA/Starch biodegradable films. International Journal of Biological Macromolecules, 116, 385–393. https://doi.org/10.1016/j.ijbiomac.2018.05.036