Entomoremediación: Influencia de una Dieta Plástica en el Desarrollo de Tenebrio Molitor para Generar Biofertilizante

##plugins.themes.bootstrap3.article.main##

Daniela Bastidas Proaño


Palabras clave:
Entomoremediation, expanded polystyrene, frass, insecticulture, plastic waste Entomoremediación, Frass, Insecticultura, Poliestireno expandido, Residuos plásticos

Resumen

El plástico es ampliamente utilizado y responsable de impactos ambientales negativos. Tal es el caso del poliestireno expandido (EPS), que presenta desafíos de revalorización por su baja densidad. Aunque ciertas larvas de insecto, como tenebrio molitor, han demostrado la capacidad de mineralizar plásticos, la insecticultura de estos aún se enfoca en obtener proteína sostenible y biofertilizante. En este estudio, se investiga la influencia de una dieta de EPS en el desarrollo larval de T. molitor durante 6 meses, y se examina cómo la dieta afecta el volumen de biofertilizante recolectado en este lapso. Se desarrollaron ensayos con tres dietas, realizando mediciones y recolección de material de manera periódica. Los resultados indican que las larvas alimentadas con un sustrato combinado, así como aquellas con una dieta orgánica, demuestran tasas de supervivencia de hasta 66%. La longitud final es inferior en la dieta inorgánica (112mm), y en las otras dietas superan los 162 mm. Las larvas de una dieta inorgánica no progresaron a pupa, demostraron un Factor de Conversión de Alimento desalentador (3,87) y produjeron menor cantidad de frass/biofertilizante (1,28g), en comparación con la dieta combinada que registró 5,11g. Los datos sugieren que la entomoremediación plástica funciona óptimamente si se cría larvas en un sustrato combinado de EPS y elementos orgánicos. Dicha condición no solo produce resultados positivos, sino que se alinea con los principios de economía circular. En consecuencia, se demuestra que una dieta combinada es ideal para abordarla como opción en el tratamiento de residuos de EPS.

Descargas

Descargas

Los datos de descargas todavía no están disponibles.




Detalles del artículo

Citas

An, R., Liu, C., Wang, J., y Jia, P. (2023). Recent Advances in Degradation of Polymer Plastics by Insects Inhabiting Microorganisms. Polymers, 15(5), 1307. https://doi.org/10.3390/polym15051307

Arbab, A. (2019). Effect of temperature on pupal development in meal worm Tenebrio molitor L. Indian Journal of Entomology, 81(4), 640. https://doi.org/10.5958/0974-8172.2019.00138.X

Arriola, E., y Velasquez, F. (2013). Evaluación técnica de alternativas de reciclaje de poliestireno expandido (EPS). [Tesis de pregrado, Universidad de El Salvador]. Red de repositorios Latinoamericanos repositorio de Obtenido de: https://repositorioslatinoame6ricanos.uchile.cl/handle/2250/161014.

Ayres, M., Ayres, J., Ayres, D., y Santos, A. (2007). BioEstat Aplicacoes estatisticas nas áreas das ciecias biológicas and medical (5.0).

Bataineh, K. M. (2020). Life-Cycle Assessment of Recycling Postconsumer High-Density Polyethylene and Polyethylene Terephthalate. Advances in Civil Engineering, 2020, 1–15. https://doi.org/10.1155/2020/8905431

Blakstad, J. (2021). The utilization of frass from the yellow mealworm (Tenebrio molitor) as a plant fertilizer and immune stimulant. [Tesis de Maestría, Norwegian University of Science and Technology]. https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2782494?locale-attribute=en

Bozek, M., Hanus-Lorenz, B., y Rybak, J. (2017). The studies on waste biodegradation by Tenebrio molitor. E3S Web of Conferences, 17, 00011. https://doi.org/10.1051/e3sconf/20171700011

Brandon, A., Gao, S., Tian, R., Ning, D., Yang, S., Zhou, J., Wu, W., y Criddle, C. (2018). Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor) and Effects on the Gut Microbiome. Environmental Science & Technology, 52(11), 6526–6533. https://doi.org/10.1021/acs.est.8b02301

Bulak, P., Polakowski, C., Nowak, K., Wasko, A., Wiacek, D., & Bieganowski, A. (2018). Hermetia illucens as a new and promising species for use in entomoremediation. Science of The Total Environment, 633, 912–919. https://doi.org/10.1016/j.scitotenv.2018.03.252

Cabezas, G. (2023). Suplementación con microorganismos eficientes sobre algunos parámetros productivos en pollos cobb 500. [Tesis de pregrado, Universidad Nacional Micaela Bastidas de Apurímac]. Repositorio UNAMBA.

https://repositorio.unamba.edu.pe/handle/UNAMBA/1251

Cella, R., Mumbach, G., Andrade, K., Oliveira, P., Marangoni, C., Bolzan, A., Bernard, S., y Machado, R. (2018). Polystyrene recycling processes by dissolution in ethyl acetate. Journal of Applied Polymer Science, 135(18). https://doi.org/10.1002/app.46208

Chen, Y., Awasthi, A. K., Wei, F., Tan, Q., y Li, J. (2021). Single-use plastics: Production, usage, disposal, and adverse impacts. In Science of the Total Environment (Vol. 752). https://doi.org/10.1016/j.scitotenv.2020.141772

Gan, S., Phua, S., Yeo, J., Heng, Z., y Xing, Z. (2021). Method for Zero-Waste Circular Economy Using Worms for Plastic Agriculture: Augmenting Polystyrene Consumption and Plant Growth. Methods and Protocols, 4(2), 43. https://doi.org/10.3390/mps4020043

Gärttling, D., Kirchner, S., y Schulz, H. (2020). Assessment of the N- and P-Fertilization Effect of Black Soldier Fly (Diptera: Stratiomyidae) By-Products on Maize. Journal of Insect Science, 20(5). https://doi.org/10.1093/jisesa/ieaa089

Grau, T., Vilcinskas, A., y Joop, G. (2017). Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed. Zeitschrift Für Naturforschung C, 72(9–10), 337–349. https://doi.org/10.1515/znc-2017-0033

Haque, Md. S. (2019). Sustainable use of plastic brick from waste PET plastic bottle as building block in Rohingya refugee camp: a review. Environmental Science and Pollution Research, 26(36), 36163–36183. https://doi.org/10.1007/s11356-019-06843-y

IPIFF: Plataforma Internacional de Alimentos de Insecto. (2022). Guide on Good Hygiene Practices. Chapter 1-Food and feed safety management systems: general principles and EU requirements. https://ipiff.org/wp-content/uploads/2019/12/IPIFF-Guide-on-Good-Hygiene-Practices.pdf(Julio, 2023)

Jiang, S., Su, T., Zhao, J., y Wang, Z. (2021). Biodegradation of Polystyrene by Tenebrio molitor, Galleria mellonella, and Zophobas atratus Larvae and Comparison of Their Degradation Effects. Polymers, 13(20), 3539. https://doi.org/10.3390/polym13203539

Lebreton, L., y Andrady, A. (2019). Future scenarios of global plastic waste generation and disposal. Palgrave Communications, 5(1). https://doi.org/10.1057/s41599-018-0212-7

Lou, Y., Ekaterina, P., Yang, S., Lu, B., Liu, B., Ren, N., Corvini, P., y Xing, D. (2020). Biodegradation of Polyethylene and Polystyrene by Greater Wax Moth Larvae (Galleria mellonella L.) and the Effect of Co-diet Supplementation on the Core Gut Microbiome. Environmental Science & Technology, 54(5), 2821–2831. https://doi.org/10.1021/acs.est.9b07044

Lou, Y., Li, Y., Lu, B., Liu, Q., Yang, S., Liu, B., Ren, N., Wu, W., yXing, D. (2021). Response of the yellow mealworm (Tenebrio molitor) gut microbiome to diet shifts during polystyrene and polyethylene biodegradation. Journal of Hazardous Materials, (416). https://doi.org/10.1016/j.jhazmat.2021.126222

Mirzaeva, D. A., Khujamshukurov, N. A., Zokirov, B., Soxibov, B. O., y Kuchkarova, D. (2020). Influence of Temperature and Humidity on the Development of Tenebrio molitor L. International Journal of Current Microbiology and Applied Sciences, 9(5), 3544–3559. https://doi.org/10.20546/ijcmas.2020.905.422

Mondragón, I. (2021). Dimorfismo sexual de Zophobas morio (Fabricius, 1776) (Coleoptera, Tenebrionidae) en las etapas de pupa y de adulto. Ingeniería y Región, 25, 22–31. https://doi.org/10.25054/22161325.2703

Official Journal of the European Union (2021). Amending certain Annexes to Regulation (EU) No 142/2011 as regards the requirements for placing on the market of certain insect products and the adaptation of a containment method (L. No. 142/2011). https://www.fao.org/faolex/results/details/en/c/LEX-FAOC109216/

Oonincx, D., van Broekhoven, S., van Huis, A., y van Loon, J. J. A. (2019). Correction: Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products. PLOS ONE, 14(10), articulo e0222043. https://doi.org/10.1371/journal.pone.0222043

Patrício. A., Prata, J., Walker, T., Campos, D., Duarte, A., Soares, A., Barcelò, D., y Rocha-Santos, T. (2020). Rethinking and optimising plastic waste management under COVID-19 pandemic: Policy solutions based on redesign and reduction of single-use plastics and personal protective equipment. Science of The Total Environment, 742, 140565. https://doi.org/10.1016/j.scitotenv.2020.140565

Poveda, J. (2021). Insect frass in the development of sustainable agriculture. A review. Agronomy for Sustainable Development, 41(1), 5. https://doi.org/10.1007/s13593-020-00656-x

Ramli, N. H., Mustapa, S., y Abdul, M. (2019). Application of expanded polystyrene (EPS) in buildings and constructions: A review. Journal of Applied Polymer Science, 47529. https://doi.org/10.1002/app.47529

Solíz, M. (2015). Ecología política y geografía crítica de la basura en el Ecuador. Letras Verdes. Revista Latinoamericana de Estudios Socioambientales, 17. https://doi.org/10.17141/letrasverdes.17.2015.1259

Sun, J., Prabhu, A., Aroney, S., y Rinke, C. (2022). Insights into plastic biodegradation: community composition and functional capabilities of the superworm (Zophobas morio) microbiome in styrofoam feeding trials. Microbial Genomics, 8(6). https://doi.org/10.1099/mgen.0.000842

Tan, K., Mohd, N., Mohd A., Razak, A., y Kamarudin, K. (2021). Isolation and identification of polystyrene degrading bacteria from Zophobas morio’s gut. Walailak Journal of Science and Technology, 18(8). https://doi.org/10.48048/wjst.2021.9118

Truman, J., y Riddiford, L. (2019). The evolution of insect metamorphosis: a developmental and endocrine view. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1783), 20190070. https://doi.org/10.1098/rstb.2019.0070

van Huis, A., van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., y Vantomme, P. (2013). Edible insects: future prospects for food and feed securityRoma, Italia. FAO. https://www.fao.org/3/i3253e/i3253e.pdf

Yang, L., Gao, J., Liu, Y., Zhuang, G., Peng, X., Wu, W., y Zhuang, X. (2021). Biodegradation of expanded polystyrene and low-density polyethylene foams in larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae): Broad versus limited extent depolymerization and microbe-dependence versus independence. Chemosphere, 262, 127818. https://doi.org/10.1016/j.chemosphere.2020.127818

Yang, S., Brandon, A, Andrew Flanagan, J., Yang, J., Ning, D., Cai, S., Fan, H., Wang, Z., Ren, J., Benbow, E., Ren, N., Waymouth, R., Zhou, J., Criddle, C., y Wu, W. (2018). Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 191, 979–989. https://doi.org/10.1016/j.chemosphere.2017.10.117

Yang, X, Wen, P., Yang, Y.., Jia, P., Li, W., y Pei, D. (2023). Plastic biodegradation by in vitro environmental microorganisms and in vivo gut microorganisms of insects. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1001750

Yang, Y., Yang, J., Wu, W, Zhao, J., Song, Y., Gao, L., Yang, R., yJiang, L. (2015). Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization and Isotopic Tests. Environmental Science and Technology, 49(20), 12080–12086. https://doi.org/10.1021/acs.est.5b02661

Zielinska, E., Zielinski, D., Jakubczyk, A., Karas, M., Pankiewicz, U., Flasz, B., Dziewiecka, M., y Lewicki, S. (2021). The impact of polystyrene consumption by edible insects Tenebrio molitor and Zophobas morio on their nutritional value, cytotoxicity, and oxidative stress parameters. Food Chemistry, 345, 128846. https://doi.org/10.1016/j.foodchem.2020.128846