Entomoremediation: Influence of a Plastic Diet on the Development of Tenebrio Molitor to Generate Biofertilizer

##plugins.themes.bootstrap3.article.main##

Daniela Bastidas Proaño


Keywords:
Entomoremediation, expanded polystyrene, frass, insecticulture, plastic waste Entomoremediación, Frass, Insecticultura, Poliestireno expandido, Residuos plásticos

Abstract

Plastic is widely used and responsible for negative environmental impacts. Such is the case of expanded polystyrene (EPS), a material that presents revaluation challenges due to its low density. The ability of certain insects larvae, such as Tenebrio molitor, to mineralize plastic has been demonstrated, although its insect farming still focuses on obtaining sustainable protein and biofertilizer. This study investigates the influence of an EPS diet on the larval development of T. molitor for 6 months and examines how the diet affects the volume of biofertilizer collected in this period. Trials were developed with three diets, performing periodic measurements and collection of material. The results indicate that larvae fed a combined substrate, as well as those fed an organic diet, demonstrate survival rates of up to 66%. The final length is lower in the inorganic diet (112 mm), and in the other diets it exceeds 162 mm. Larvae on an inorganic diet did not progress to pupal stage, demonstrated a disappointing lowest Feed Conversion Ratio (3.87) and produced less frass (1.28g), compared to the combined diet which recorded 5.11g. The data suggest that plastic entomoremediation works optimally if larvae are raised on a combined diet substrate of EPS and organic elements. This condition not only produces positive results, but also is aligned well with the principles of the circular economy. Therefore, a combined diet proves to be an ideal candidate for tackling EPS waste.

##plugins.themes.revistapolitecnica.stadistisDownloadTitle##

Downloads

Download data is not yet available.




Article Details

References

An, R., Liu, C., Wang, J., y Jia, P. (2023). Recent Advances in Degradation of Polymer Plastics by Insects Inhabiting Microorganisms. Polymers, 15(5), 1307. https://doi.org/10.3390/polym15051307

Arbab, A. (2019). Effect of temperature on pupal development in meal worm Tenebrio molitor L. Indian Journal of Entomology, 81(4), 640. https://doi.org/10.5958/0974-8172.2019.00138.X

Arriola, E., y Velasquez, F. (2013). Evaluación técnica de alternativas de reciclaje de poliestireno expandido (EPS). [Tesis de pregrado, Universidad de El Salvador]. Red de repositorios Latinoamericanos repositorio de Obtenido de: https://repositorioslatinoame6ricanos.uchile.cl/handle/2250/161014.

Ayres, M., Ayres, J., Ayres, D., y Santos, A. (2007). BioEstat Aplicacoes estatisticas nas áreas das ciecias biológicas and medical (5.0).

Bataineh, K. M. (2020). Life-Cycle Assessment of Recycling Postconsumer High-Density Polyethylene and Polyethylene Terephthalate. Advances in Civil Engineering, 2020, 1–15. https://doi.org/10.1155/2020/8905431

Blakstad, J. (2021). The utilization of frass from the yellow mealworm (Tenebrio molitor) as a plant fertilizer and immune stimulant. [Tesis de Maestría, Norwegian University of Science and Technology]. https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2782494?locale-attribute=en

Bozek, M., Hanus-Lorenz, B., y Rybak, J. (2017). The studies on waste biodegradation by Tenebrio molitor. E3S Web of Conferences, 17, 00011. https://doi.org/10.1051/e3sconf/20171700011

Brandon, A., Gao, S., Tian, R., Ning, D., Yang, S., Zhou, J., Wu, W., y Criddle, C. (2018). Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor) and Effects on the Gut Microbiome. Environmental Science & Technology, 52(11), 6526–6533. https://doi.org/10.1021/acs.est.8b02301

Bulak, P., Polakowski, C., Nowak, K., Wasko, A., Wiacek, D., & Bieganowski, A. (2018). Hermetia illucens as a new and promising species for use in entomoremediation. Science of The Total Environment, 633, 912–919. https://doi.org/10.1016/j.scitotenv.2018.03.252

Cabezas, G. (2023). Suplementación con microorganismos eficientes sobre algunos parámetros productivos en pollos cobb 500. [Tesis de pregrado, Universidad Nacional Micaela Bastidas de Apurímac]. Repositorio UNAMBA.

https://repositorio.unamba.edu.pe/handle/UNAMBA/1251

Cella, R., Mumbach, G., Andrade, K., Oliveira, P., Marangoni, C., Bolzan, A., Bernard, S., y Machado, R. (2018). Polystyrene recycling processes by dissolution in ethyl acetate. Journal of Applied Polymer Science, 135(18). https://doi.org/10.1002/app.46208

Chen, Y., Awasthi, A. K., Wei, F., Tan, Q., y Li, J. (2021). Single-use plastics: Production, usage, disposal, and adverse impacts. In Science of the Total Environment (Vol. 752). https://doi.org/10.1016/j.scitotenv.2020.141772

Gan, S., Phua, S., Yeo, J., Heng, Z., y Xing, Z. (2021). Method for Zero-Waste Circular Economy Using Worms for Plastic Agriculture: Augmenting Polystyrene Consumption and Plant Growth. Methods and Protocols, 4(2), 43. https://doi.org/10.3390/mps4020043

Gärttling, D., Kirchner, S., y Schulz, H. (2020). Assessment of the N- and P-Fertilization Effect of Black Soldier Fly (Diptera: Stratiomyidae) By-Products on Maize. Journal of Insect Science, 20(5). https://doi.org/10.1093/jisesa/ieaa089

Grau, T., Vilcinskas, A., y Joop, G. (2017). Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed. Zeitschrift Für Naturforschung C, 72(9–10), 337–349. https://doi.org/10.1515/znc-2017-0033

Haque, Md. S. (2019). Sustainable use of plastic brick from waste PET plastic bottle as building block in Rohingya refugee camp: a review. Environmental Science and Pollution Research, 26(36), 36163–36183. https://doi.org/10.1007/s11356-019-06843-y

IPIFF: Plataforma Internacional de Alimentos de Insecto. (2022). Guide on Good Hygiene Practices. Chapter 1-Food and feed safety management systems: general principles and EU requirements. https://ipiff.org/wp-content/uploads/2019/12/IPIFF-Guide-on-Good-Hygiene-Practices.pdf(Julio, 2023)

Jiang, S., Su, T., Zhao, J., y Wang, Z. (2021). Biodegradation of Polystyrene by Tenebrio molitor, Galleria mellonella, and Zophobas atratus Larvae and Comparison of Their Degradation Effects. Polymers, 13(20), 3539. https://doi.org/10.3390/polym13203539

Lebreton, L., y Andrady, A. (2019). Future scenarios of global plastic waste generation and disposal. Palgrave Communications, 5(1). https://doi.org/10.1057/s41599-018-0212-7

Lou, Y., Ekaterina, P., Yang, S., Lu, B., Liu, B., Ren, N., Corvini, P., y Xing, D. (2020). Biodegradation of Polyethylene and Polystyrene by Greater Wax Moth Larvae (Galleria mellonella L.) and the Effect of Co-diet Supplementation on the Core Gut Microbiome. Environmental Science & Technology, 54(5), 2821–2831. https://doi.org/10.1021/acs.est.9b07044

Lou, Y., Li, Y., Lu, B., Liu, Q., Yang, S., Liu, B., Ren, N., Wu, W., yXing, D. (2021). Response of the yellow mealworm (Tenebrio molitor) gut microbiome to diet shifts during polystyrene and polyethylene biodegradation. Journal of Hazardous Materials, (416). https://doi.org/10.1016/j.jhazmat.2021.126222

Mirzaeva, D. A., Khujamshukurov, N. A., Zokirov, B., Soxibov, B. O., y Kuchkarova, D. (2020). Influence of Temperature and Humidity on the Development of Tenebrio molitor L. International Journal of Current Microbiology and Applied Sciences, 9(5), 3544–3559. https://doi.org/10.20546/ijcmas.2020.905.422

Mondragón, I. (2021). Dimorfismo sexual de Zophobas morio (Fabricius, 1776) (Coleoptera, Tenebrionidae) en las etapas de pupa y de adulto. Ingeniería y Región, 25, 22–31. https://doi.org/10.25054/22161325.2703

Official Journal of the European Union (2021). Amending certain Annexes to Regulation (EU) No 142/2011 as regards the requirements for placing on the market of certain insect products and the adaptation of a containment method (L. No. 142/2011). https://www.fao.org/faolex/results/details/en/c/LEX-FAOC109216/

Oonincx, D., van Broekhoven, S., van Huis, A., y van Loon, J. J. A. (2019). Correction: Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products. PLOS ONE, 14(10), articulo e0222043. https://doi.org/10.1371/journal.pone.0222043

Patrício. A., Prata, J., Walker, T., Campos, D., Duarte, A., Soares, A., Barcelò, D., y Rocha-Santos, T. (2020). Rethinking and optimising plastic waste management under COVID-19 pandemic: Policy solutions based on redesign and reduction of single-use plastics and personal protective equipment. Science of The Total Environment, 742, 140565. https://doi.org/10.1016/j.scitotenv.2020.140565

Poveda, J. (2021). Insect frass in the development of sustainable agriculture. A review. Agronomy for Sustainable Development, 41(1), 5. https://doi.org/10.1007/s13593-020-00656-x

Ramli, N. H., Mustapa, S., y Abdul, M. (2019). Application of expanded polystyrene (EPS) in buildings and constructions: A review. Journal of Applied Polymer Science, 47529. https://doi.org/10.1002/app.47529

Solíz, M. (2015). Ecología política y geografía crítica de la basura en el Ecuador. Letras Verdes. Revista Latinoamericana de Estudios Socioambientales, 17. https://doi.org/10.17141/letrasverdes.17.2015.1259

Sun, J., Prabhu, A., Aroney, S., y Rinke, C. (2022). Insights into plastic biodegradation: community composition and functional capabilities of the superworm (Zophobas morio) microbiome in styrofoam feeding trials. Microbial Genomics, 8(6). https://doi.org/10.1099/mgen.0.000842

Tan, K., Mohd, N., Mohd A., Razak, A., y Kamarudin, K. (2021). Isolation and identification of polystyrene degrading bacteria from Zophobas morio’s gut. Walailak Journal of Science and Technology, 18(8). https://doi.org/10.48048/wjst.2021.9118

Truman, J., y Riddiford, L. (2019). The evolution of insect metamorphosis: a developmental and endocrine view. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1783), 20190070. https://doi.org/10.1098/rstb.2019.0070

van Huis, A., van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., y Vantomme, P. (2013). Edible insects: future prospects for food and feed securityRoma, Italia. FAO. https://www.fao.org/3/i3253e/i3253e.pdf

Yang, L., Gao, J., Liu, Y., Zhuang, G., Peng, X., Wu, W., y Zhuang, X. (2021). Biodegradation of expanded polystyrene and low-density polyethylene foams in larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae): Broad versus limited extent depolymerization and microbe-dependence versus independence. Chemosphere, 262, 127818. https://doi.org/10.1016/j.chemosphere.2020.127818

Yang, S., Brandon, A, Andrew Flanagan, J., Yang, J., Ning, D., Cai, S., Fan, H., Wang, Z., Ren, J., Benbow, E., Ren, N., Waymouth, R., Zhou, J., Criddle, C., y Wu, W. (2018). Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 191, 979–989. https://doi.org/10.1016/j.chemosphere.2017.10.117

Yang, X, Wen, P., Yang, Y.., Jia, P., Li, W., y Pei, D. (2023). Plastic biodegradation by in vitro environmental microorganisms and in vivo gut microorganisms of insects. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1001750

Yang, Y., Yang, J., Wu, W, Zhao, J., Song, Y., Gao, L., Yang, R., yJiang, L. (2015). Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization and Isotopic Tests. Environmental Science and Technology, 49(20), 12080–12086. https://doi.org/10.1021/acs.est.5b02661

Zielinska, E., Zielinski, D., Jakubczyk, A., Karas, M., Pankiewicz, U., Flasz, B., Dziewiecka, M., y Lewicki, S. (2021). The impact of polystyrene consumption by edible insects Tenebrio molitor and Zophobas morio on their nutritional value, cytotoxicity, and oxidative stress parameters. Food Chemistry, 345, 128846. https://doi.org/10.1016/j.foodchem.2020.128846