Diseño e Implementación de un Prototipo Portable de Generación Piezoeléctrica
##plugins.themes.bootstrap3.article.main##
Resumen
Este documento presenta una investigación sobre el diseño y evaluación de un sistema de recolección de energía piezoeléctrica utilizando una alfombra con múltiples elementos piezoeléctricos. La investigación inicia con una introducción sobre la importancia de desarrollar fuentes alternativas de energía renovable para dispositivos electrónicos portátiles. Posteriormente, se presenta una revisión de literatura sobre tecnologías de recolección de energía del movimiento humano, enfocándose en materiales piezoeléctricos. La metodología describe el diseño de un prototipo de alfombra piezoeléctrica compuesta por una capa de goma, una lámina de acrílico y múltiples elementos piezoeléctricos conectados en paralelo a un circuito recolector de energía. Se realizaron pruebas para caracterizar la respuesta de los sensores piezoeléctricos y evaluar el sistema de recolección de energía bajo diferentes configuraciones. Los resultados indican que un solo elemento generó 18,59 uJ, mientras que 10 elementos conectados produjeron 297,4 uJ con un voltaje de 0,57 V. Además, el sistema permite la adquisición remota de datos a través de la plataforma IoT Thingspeak.
Descargas
Descargas
Detalles del artículo
Citas
Abdal, A. M., & Leong, K. S. (2019). Hybrid Energy Harvesting Scheme Using Piezoelectric and Thermoelectric Generators. International Journal of Integrated Engineering, 11(1), 19–26. https://doi.org/10.30880/ijie.2019.11.01.003
Alhawari, M., Mohammad, B., Saleh, H., & Ismail, M. (2018). Energy Harvesting for Self-Powered Wearable Devices. In Analog Circuits and Signal Processing. Springer International Publishing. https://doi.org/10.1007/978-3-319-62578-2
Ali, M., Bathaei, M. J., Istif, E., Karimi, S. N. H., & Beker, L. (2023). Biodegradable Piezoelectric Polymers: Recent Advancements in Materials and Applications. Advanced Healthcare Materials, 12(23), 1–32. https://doi.org/10.1002/adhm.202300318
Cao, W., Yu, W., & Huang, W. (2019). A Piezoelectric Energy Harvester for Wearable Applications. In Advances in Intelligent Systems and Computing (Vol. 849, pp. 61–67). Springer International Publishing. https://doi.org/10.1007/978-3-319-99695-0_8
Chen, Y., Gu, C., Zhao, P., & Chen, W. (2020). Research on Piezoelectric Energy harvesting from Multi-Direction Wind-Induced Vibrations. IOP Conference Series: Earth and Environmental Science, 617(1), 012014. https://doi.org/10.1088/1755-1315/617/1/012014
Dinulovic, D., Brooks, M., Haug, M., & Petrovic, T. (2015). Rotational Electromagnetic Energy Harvesting System. Physics Procedia, 75, 1244–1251. https://doi.org/10.1016/j.phpro.2015.12.137
Fan, K., Yu, B., Zhu, Y., Liu, Z., & Wang, L. (2017). Scavenging energy from the motion of human lower limbs via a piezoelectric energy harvester. International Journal of Modern Physics B, 31(07), 1741011. https://doi.org/10.1142/S0217979217410119
Fan, F., Tang, W., & Wang, Z. (2016). Flexible Nanogenerators for Energy Harvestign and Self- Powered Electronics. Advanced Materials, 28(22), 4283-4305. https://doi.org/10.1002/adma.201504299
Guido, F. Qualtieri, A., Algieri, L., Lemma, E. D., De Vittorio, M., & Todaro, M. T. (2016). AIN-based flexible piezoelectric skin for energy harvesting from human motion. Microelectronic Engineering, 159, 174-178. https://doi.org/10.1016/j.mee.2016.03.041
Huang, K., Zhang, H., Jiang, J., Zhang, Y., Zhou, Y., Sun, L., & Zhang, Y. (2022). The optimal design of a piezoelectric energy harvester for smart pavements. International Journal of Mechanical Sciences, 232, 107609. https://doi.org/10.1016/j.ijmecsci.2022.107609
Kang, M.-G., Jung, W.-S., Kang, C.-Y., & Yoon, S.-J. (2016). Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies. Actuators, 5(1), 5. https://doi.org/10.3390/act5010005
Kim, M.-O., Pyo, S., Oh, Y., Kang, Y., Cho, K.-H., Choi, J., & Kim, J. (2018). Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor. Smart Materials and Structures, 27(3), 035001. https://doi.org/10.1088/1361-665X/aaa722
Lin, Z., Chen, J., Li, X., Zhou, Z., Meng, K., Wei, W., Yang, J., & Wang, Z. L. (2017). Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring. ACS Nano, 11(9), 8830–8837. https://doi.org/10.1021/acsnano.7b02975
Moure, A., Izquierdo Rodríguez, M. A., Rueda, S. H., Gonzalo, A., Rubio-Marcos, F., Cuadros, D. U., Pérez-Lepe, A., & Fernández, J. F. (2016). Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting. Energy Conversion and Management, 112, 246–253. https://doi.org/10.1016/j.enconman.2016.01.030
Narita, F., & Fox, M. (2018). A Review on Piezoelectric, Magnetostrictive, and Magnetoelectric Materials and Device Technologies for Energy Harvesting Applications. Advanced Engineering Materials, 20(5), 1–22. https://doi.org/10.1002/adem.201700743
Niasar, E. H. A., Dahmardeh, M., & Googarchin, H. S. (2020). Roadway piezoelectric energy harvester design considering electrical and mechanical performances. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(1), 32–48. https://doi.org/10.1177/0954406219873366
Niroomand, M., & Foroughi, H. R. (2016). A rotary electromagnetic microgenerator for energy harvesting from human motions. Journal of Applied Research and Technology, 14(4), 259–267. https://doi.org/10.1016/j.jart.2016.06.002
Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990. https://doi.org/10.1080/23311916.2016.1167990
Qian, F., Xu, T.-B., & Zuo, L. (2018). Design, optimization, modeling and testing of a piezoelectric footwear energy harvester. Energy Conversion and Management, 171(February), 1352–1364. https://doi.org/10.1016/j.enconman.2018.06.069
Qian, F., Xu, T.-B., & Zuo, L. (2019). Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism. Energy, 189, 116140. https://doi.org/10.1016/j.energy.2019.116140
Quan, T., Wang, X., Wang, Z. L., & Yang, Y. (2015). Hybridized Electromagnetic–Triboelectric Nanogenerator for a Self-Powered Electronic Watch. ACS Nano, 9(12), 12301–12310. https://doi.org/10.1021/acsnano.5b05598
Raj, J. S., & Ranganathan, G. (2021). Comparative Analysis of Modelling for Piezoelectric Energy Harvesting Solutions. Journal of Electrical Engineering and Automation, 3(2), 138–153. https://doi.org/10.36548/jeea.2021.2.006
Randriantsoa, A. N. A., Fakra, D. A. H., Rakotondrajaona, L., & Van Der Merwe Steyn, W. J. (2023). Recent Advances in Hybrid Energy Harvesting Technologies Using Roadway Pavements: A Review of the Technical Possibility of Using Piezo-thermoelectrical Combinations. International Journal of Pavement Research and Technology, 16(4), 796–821. https://doi.org/10.1007/s42947-022-00164-z
Roundy, S., & Trolier-McKinstry, S. (2018). Materials and approaches for on-body energy harvesting. MRS Bulletin, 43(3), 206–213. https://doi.org/10.1557/mrs.2018.33
Saha, C. R., O’Donnell, T., Wang, N., & McCloskey, P. (2008). Electromagnetic generator for harvesting energy from human motion. Sensors and Actuators A: Physical, 147(1), 248–253. https://doi.org/10.1016/j.sna.2008.03.008
Song, P., Yang, G., Lang, T., & Yong, K.-T. (2019). Nanogenerators for wearable bioelectronics and biodevices. Journal of Physics D: Applied Physics, 52(2), 023002. https://doi.org/10.1088/1361-6463/aae44d
Vizzari, D., Gennesseaux, E., Lavaud, S., Bouron, S., & Chailleux, E. (2021). Pavement energy harvesting technologies: a critical review. RILEM Technical Letters, 6, 93–104. https://doi.org/10.21809/rilemtechlett.2021.131
Wang, Jasim, & Chen. (2018). Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review. Applied Energy, 212(December 2017), 1083–1094. https://doi.org/10.1016/j.apenergy.2017.12.125
Wang, Z. L., Chen, J., & Lin, L. (2015). Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy & Environmental Science, 8(8), 2250–2282. https://doi.org/10.1039/C5EE01532D
Wen, S., & Xu, Q. (2018). Design of a Novel Piezoelectric Energy Harvester for Scavenging Energy from Human Walking. 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2018-July, 792–797. https://doi.org/10.1109/AIM.2018.8452343
Wu, Y., Qiu, J., Zhou, S., Ji, H., Chen, Y., & Li, S. (2018). A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting. Applied Energy, 231(August), 600–614. https://doi.org/10.1016/j.apenergy.2018.09.082
Xie, L., & Cai, M. (2014). Human Motion: Sustainable Power for Wearable Electronics. IEEE Pervasive Computing, 13(4), 42–49. https://doi.org/10.1109/MPRV.2014.67
Zhang, Y., Cao, J., Zhu, H., & Lei, Y. (2019). Design, modeling and experimental verification of circular Halbach electromagnetic energy harvesting from bearing motion. Energy Conversion and Management, 180(July 2018), 811–821. https://doi.org/10.1016/j.enconman.2018.11.037
Zhao, J., & You, Z. (2014). A Shoe-Embedded Piezoelectric Energy Harvester for Wearable Sensors. Sensors, 14(7), 12497–12510. https://doi.org/10.3390/s140712497