Diseño e Implementación de un Prototipo Portable de Generación Piezoeléctrica

##plugins.themes.bootstrap3.article.main##

Miguel Portilla

Raúl Ludeña

Víctor Asanza

Miguel Dávila

Manuel Nevarez


Palabras clave:
Enewable energy, Energy harvesting, Human movement, Piezoelectric mat, IoT Energía renovable, Recolección de energía, Movimiento humano, Alfombra piezoeléctrica, IoT

Resumen

Este documento presenta una investigación sobre el diseño y evaluación de un sistema de recolección de energía piezoeléctrica utilizando una alfombra con múltiples elementos piezoeléctricos. La investigación inicia con una introducción sobre la importancia de desarrollar fuentes alternativas de energía renovable para dispositivos electrónicos portátiles. Posteriormente, se presenta una revisión de literatura sobre tecnologías de recolección de energía del movimiento humano, enfocándose en materiales piezoeléctricos. La metodología describe el diseño de un prototipo de alfombra piezoeléctrica compuesta por una capa de goma, una lámina de acrílico y múltiples elementos piezoeléctricos conectados en paralelo a un circuito recolector de energía. Se realizaron pruebas para caracterizar la respuesta de los sensores piezoeléctricos y evaluar el sistema de recolección de energía bajo diferentes configuraciones. Los resultados indican que un solo elemento generó 18,59 uJ, mientras que 10 elementos conectados produjeron 297,4 uJ con un voltaje de 0,57 V. Además, el sistema permite la adquisición remota de datos a través de la plataforma IoT Thingspeak.

Descargas

Descargas

Los datos de descargas todavía no están disponibles.




Detalles del artículo

Biografías de los autores/as

Miguel Portilla , Pontificia Universidad Católica del Ecuador - Sede Esmeraldas PUCESE, Programa de Maestría en Electricidad, Esmeraldas, Ecuador

Ingeniero Electrónico en Telecomunicaciones, Maestrante en Electricidad, mención Energías Renovables y Eficiencia Energética en la actualidad. Desde hace 10 años labora en Refinería Esmeraldas en el área de Mantenimiento Eléctrico con experiencia en mantenimiento de Subestaciones Eléctricas, configuraciones de Dispositivos Electrónicos Inteligentes en el área de Protecciones Eléctricas, Mantenimiento y Reparación de Switchgears de 13,2kV y Turbogeneradores de 6MW, Ingeniería Básica para diseño de planos de control y fuerza en la implementación de arrancadores de baja tensión y arrancadores suaves de media tensión, Supervisión de un sistema de deslastre de carga (Load Shedding), Redes y
comunicaciones de sistema Scada. El correo electrónico para contactarlo es: maportilla@pucese.edu.ec.

Raúl Ludeña , Pontificia Universidad Católica del Ecuador - Sede Esmeraldas PUCESE, Programa de Maestría en Electricidad, Esmeraldas, Ecuador

Ingeniero Eléctrico; maestrante en electricidad, mención energías renovables y eficiencia energética. Experiencia en diseño y construcción de proyectos eléctricos en redes de alta, media y baja tensión, en energías renovables y control industrial. Soporte técnico, diseño, configuración y montaje de sistemas de seguridad electrónica para inmuebles. Programador de equipos de domótica residenciales. Experto asesor de diseño y/o instalación de sistemas contra incendios en industrias El correo electrónico para contactarlo es: rjludena@pucese.edu.ec.

Víctor Asanza , SDAS Research Group, Ben Guerir 43150, Moroco

Investigador en campos como el Diseño de Sistemas Digitales basados en FPGA, Procesadores de Código Abierto, Hardware de Código Abierto, Computación en el Borde, Inteligencia Artificial e Interacción Humano-Máquina, con un gran interés de investigación en la Interfaz Cerebro-Computadora. Obtuvo su título de Ingeniería en Electrónica y Telecomunicaciones en 2010 (ESPOL, Ecuador). Completó su Maestría en Automatización y Control Industrial en 2013 y su Doctorado en Ciencias de la Computación Aplicada en 2022 (ESPOL, Ecuador). Actualmente, colabora como Investigador Senior desde el 6 de junio de 2019 en el Grupo de Sistemas de Análisis de Datos Inteligentes (SDAS GROUP). Sus actividades de investigación se enfocan principalmente en los programas de sistemas embebidos inteligentes, procesadores RISC-V de código abierto, hardware de código abierto, FPGA e interacción humano-máquina.

Miguel Dávila , Pontificia Universidad Católica del Ecuador - Sede Esmeraldas PUCESE, Programa de Maestría en Electricidad, Esmeraldas, Ecuador

Ingeniero Electrónico en Sistemas Industriales y Telecomunicaciones - Universidad Politécnica Salesiana (2012). Ingeniero Eléctrico - Universidad Politécnica Salesiana (2014). Magíster en Electricidad mención Redes Eléctricas Inteligentes - Universidad de Cuenca (2020). Se desempeña como Ingeniero del Departamento AMI de la Empresa Eléctrica Regional Centrosur, docente de maestría en electricidad de la Pontificia Universidad Católica del Ecuador sede Esmeraldas y de maestría en Sistemas de Propulsión Eléctrica en la Universidad del Azuay. Miembro de grupos de investigación de electricidad en la Universidad Católica de Cuenca y docencia en la Universidad Nacional de Educación. El correo electrónico para contacto es: madavila@pucese.edu.ec

Manuel Nevarez, Pontificia Universidad Católica del Ecuador - Sede Esmeraldas PUCESE, Programa de Maestría en Electricidad, Esmeraldas, Ecuador

Ingeniero Eléctrico especializado en Electrónica y Automatización Industrial, Magister en Tecnologías para la Gestión y Práctica Docente, Máster en Industria 4.0. Experiencia en proyectos de Innovación Tecnológica, Fabricación Inteligente, Redes de sensores, Internet de las Cosas, Robótica y Sistemas Ciberfísicos. Coordinador de Cuarto Nivel en la Unidad Académica del Área de Industria, Tecnología y Comunicación, Docente Investigador de la Carrera Tecnologías de la Información en la PUCE Esmeraldas. Fundador de la empresa INGELECON especializada en el diseño de aplicaciones de hardware y software libre para la solución de problemas a través de la automatización y creación de dispositivos electrónicos. El correo electrónico para contactarlo es: manuel.nevarez@pucese.edu.ec

Citas

Abdal, A. M., & Leong, K. S. (2019). Hybrid Energy Harvesting Scheme Using Piezoelectric and Thermoelectric Generators. International Journal of Integrated Engineering, 11(1), 19–26. https://doi.org/10.30880/ijie.2019.11.01.003

Alhawari, M., Mohammad, B., Saleh, H., & Ismail, M. (2018). Energy Harvesting for Self-Powered Wearable Devices. In Analog Circuits and Signal Processing. Springer International Publishing. https://doi.org/10.1007/978-3-319-62578-2

Ali, M., Bathaei, M. J., Istif, E., Karimi, S. N. H., & Beker, L. (2023). Biodegradable Piezoelectric Polymers: Recent Advancements in Materials and Applications. Advanced Healthcare Materials, 12(23), 1–32. https://doi.org/10.1002/adhm.202300318

Cao, W., Yu, W., & Huang, W. (2019). A Piezoelectric Energy Harvester for Wearable Applications. In Advances in Intelligent Systems and Computing (Vol. 849, pp. 61–67). Springer International Publishing. https://doi.org/10.1007/978-3-319-99695-0_8

Chen, Y., Gu, C., Zhao, P., & Chen, W. (2020). Research on Piezoelectric Energy harvesting from Multi-Direction Wind-Induced Vibrations. IOP Conference Series: Earth and Environmental Science, 617(1), 012014. https://doi.org/10.1088/1755-1315/617/1/012014

Dinulovic, D., Brooks, M., Haug, M., & Petrovic, T. (2015). Rotational Electromagnetic Energy Harvesting System. Physics Procedia, 75, 1244–1251. https://doi.org/10.1016/j.phpro.2015.12.137

Fan, K., Yu, B., Zhu, Y., Liu, Z., & Wang, L. (2017). Scavenging energy from the motion of human lower limbs via a piezoelectric energy harvester. International Journal of Modern Physics B, 31(07), 1741011. https://doi.org/10.1142/S0217979217410119

Fan, F., Tang, W., & Wang, Z. (2016). Flexible Nanogenerators for Energy Harvestign and Self- Powered Electronics. Advanced Materials, 28(22), 4283-4305. https://doi.org/10.1002/adma.201504299

Guido, F. Qualtieri, A., Algieri, L., Lemma, E. D., De Vittorio, M., & Todaro, M. T. (2016). AIN-based flexible piezoelectric skin for energy harvesting from human motion. Microelectronic Engineering, 159, 174-178. https://doi.org/10.1016/j.mee.2016.03.041

Huang, K., Zhang, H., Jiang, J., Zhang, Y., Zhou, Y., Sun, L., & Zhang, Y. (2022). The optimal design of a piezoelectric energy harvester for smart pavements. International Journal of Mechanical Sciences, 232, 107609. https://doi.org/10.1016/j.ijmecsci.2022.107609

Kang, M.-G., Jung, W.-S., Kang, C.-Y., & Yoon, S.-J. (2016). Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies. Actuators, 5(1), 5. https://doi.org/10.3390/act5010005

Kim, M.-O., Pyo, S., Oh, Y., Kang, Y., Cho, K.-H., Choi, J., & Kim, J. (2018). Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor. Smart Materials and Structures, 27(3), 035001. https://doi.org/10.1088/1361-665X/aaa722

Lin, Z., Chen, J., Li, X., Zhou, Z., Meng, K., Wei, W., Yang, J., & Wang, Z. L. (2017). Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring. ACS Nano, 11(9), 8830–8837. https://doi.org/10.1021/acsnano.7b02975

Moure, A., Izquierdo Rodríguez, M. A., Rueda, S. H., Gonzalo, A., Rubio-Marcos, F., Cuadros, D. U., Pérez-Lepe, A., & Fernández, J. F. (2016). Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting. Energy Conversion and Management, 112, 246–253. https://doi.org/10.1016/j.enconman.2016.01.030

Narita, F., & Fox, M. (2018). A Review on Piezoelectric, Magnetostrictive, and Magnetoelectric Materials and Device Technologies for Energy Harvesting Applications. Advanced Engineering Materials, 20(5), 1–22. https://doi.org/10.1002/adem.201700743

Niasar, E. H. A., Dahmardeh, M., & Googarchin, H. S. (2020). Roadway piezoelectric energy harvester design considering electrical and mechanical performances. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(1), 32–48. https://doi.org/10.1177/0954406219873366

Niroomand, M., & Foroughi, H. R. (2016). A rotary electromagnetic microgenerator for energy harvesting from human motions. Journal of Applied Research and Technology, 14(4), 259–267. https://doi.org/10.1016/j.jart.2016.06.002

Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990. https://doi.org/10.1080/23311916.2016.1167990

Qian, F., Xu, T.-B., & Zuo, L. (2018). Design, optimization, modeling and testing of a piezoelectric footwear energy harvester. Energy Conversion and Management, 171(February), 1352–1364. https://doi.org/10.1016/j.enconman.2018.06.069

Qian, F., Xu, T.-B., & Zuo, L. (2019). Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism. Energy, 189, 116140. https://doi.org/10.1016/j.energy.2019.116140

Quan, T., Wang, X., Wang, Z. L., & Yang, Y. (2015). Hybridized Electromagnetic–Triboelectric Nanogenerator for a Self-Powered Electronic Watch. ACS Nano, 9(12), 12301–12310. https://doi.org/10.1021/acsnano.5b05598

Raj, J. S., & Ranganathan, G. (2021). Comparative Analysis of Modelling for Piezoelectric Energy Harvesting Solutions. Journal of Electrical Engineering and Automation, 3(2), 138–153. https://doi.org/10.36548/jeea.2021.2.006

Randriantsoa, A. N. A., Fakra, D. A. H., Rakotondrajaona, L., & Van Der Merwe Steyn, W. J. (2023). Recent Advances in Hybrid Energy Harvesting Technologies Using Roadway Pavements: A Review of the Technical Possibility of Using Piezo-thermoelectrical Combinations. International Journal of Pavement Research and Technology, 16(4), 796–821. https://doi.org/10.1007/s42947-022-00164-z

Roundy, S., & Trolier-McKinstry, S. (2018). Materials and approaches for on-body energy harvesting. MRS Bulletin, 43(3), 206–213. https://doi.org/10.1557/mrs.2018.33

Saha, C. R., O’Donnell, T., Wang, N., & McCloskey, P. (2008). Electromagnetic generator for harvesting energy from human motion. Sensors and Actuators A: Physical, 147(1), 248–253. https://doi.org/10.1016/j.sna.2008.03.008

Song, P., Yang, G., Lang, T., & Yong, K.-T. (2019). Nanogenerators for wearable bioelectronics and biodevices. Journal of Physics D: Applied Physics, 52(2), 023002. https://doi.org/10.1088/1361-6463/aae44d

Vizzari, D., Gennesseaux, E., Lavaud, S., Bouron, S., & Chailleux, E. (2021). Pavement energy harvesting technologies: a critical review. RILEM Technical Letters, 6, 93–104. https://doi.org/10.21809/rilemtechlett.2021.131

Wang, Jasim, & Chen. (2018). Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review. Applied Energy, 212(December 2017), 1083–1094. https://doi.org/10.1016/j.apenergy.2017.12.125

Wang, Z. L., Chen, J., & Lin, L. (2015). Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy & Environmental Science, 8(8), 2250–2282. https://doi.org/10.1039/C5EE01532D

Wen, S., & Xu, Q. (2018). Design of a Novel Piezoelectric Energy Harvester for Scavenging Energy from Human Walking. 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2018-July, 792–797. https://doi.org/10.1109/AIM.2018.8452343

Wu, Y., Qiu, J., Zhou, S., Ji, H., Chen, Y., & Li, S. (2018). A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting. Applied Energy, 231(August), 600–614. https://doi.org/10.1016/j.apenergy.2018.09.082

Xie, L., & Cai, M. (2014). Human Motion: Sustainable Power for Wearable Electronics. IEEE Pervasive Computing, 13(4), 42–49. https://doi.org/10.1109/MPRV.2014.67

Zhang, Y., Cao, J., Zhu, H., & Lei, Y. (2019). Design, modeling and experimental verification of circular Halbach electromagnetic energy harvesting from bearing motion. Energy Conversion and Management, 180(July 2018), 811–821. https://doi.org/10.1016/j.enconman.2018.11.037

Zhao, J., & You, Z. (2014). A Shoe-Embedded Piezoelectric Energy Harvester for Wearable Sensors. Sensors, 14(7), 12497–12510. https://doi.org/10.3390/s140712497