Oxygen Permeability in Food Packaging made of Polypropylene by Injection Molding
##plugins.themes.bootstrap3.article.main##
Abstract
El estudio de los materiales de empaques ha adquirido una creciente importancia, especialmente en el envasado de alimentos sensibles al oxígeno, por lo cual se han implementado diversas tecnologías para mejorar las propiedades de barrera contra el oxígeno, con el objetivo de prolongar la vida útil de los productos. En este contexto, durante esta investigación se propuso evaluar la tasa de transmisión de oxígeno (OTR) en envases fabricados mediante moldeo por inyección, a través de diferentes tipos de polipropileno (PP). El estudio se llevó a cabo con la medición de la OTR en los diferentes tipos de envases mediante un analizador por fluorescencia óptica, exponiendo los envases a una corriente de nitrógeno en un lado y a una de oxígeno puro en el otro lado. Los resultados revelaron 44 % mayor permeabilidad en contenedores que utilizaron tapas fabricadas con copolímero de polipropileno random (CPPR) y las tarrinas fabricadas con copolímero de polipropileno en bloques (CPPB), en comparación con las tarrinas y tapas que emplearon solo CPPB. Estos hallazgos indican que el tipo de material utilizado influye significativamente en la OTR, lo cual impacta en el rendimiento de los productos envasados. Los resultados proporcionan información relevante para el desarrollo de empaques más eficientes en términos de barrera de oxígeno, lo que contribuye a garantizar la calidad y la vida útil de los productos envasados.
##plugins.themes.revistapolitecnica.stadistisDownloadTitle##
Downloads
Article Details
References
American Society for Testing and Materials ASTM F2714-08(2013). (2013). Standard Test Method for Oxygen Headspace Analysis of Packages Using Fluorescent Decay (ASTM F2714-08(2013)). https://webstore.ansi.org/standards/astm/astmf2714082013
AMERIPEN Report - American Institute for Packaging and the Environment. (s. f.). Quantifying the Value of Packaging as a Strategy to Prevent Food Waste in America. Recuperado 1 de abril de 2023, de https://www.ameripen.org/page/foodwastereport
Andrade, M. A., Barbosa, C. H., Cerqueira, M. A., Azevedo, A. G., Barros, C., Machado, A. V., Coelho, A., Furtado, R., Correia, C. B., Saraiva, M., Vilarinho, F., Silva, A. S., & Ramos, F. (2023). PLA films loaded with green tea and rosemary polyphenolic extracts as an active packaging for almond and beef. Food Packaging and Shelf Life, 36, 101041. https://doi.org/10.1016/j.fpsl.2023.101041
Aragüez, L., Colombo, A., Borneo, R., & Aguirre, A. (2020). Active packaging from triticale flour films for prolonging storage life of cherry tomato. Food Packaging and Shelf Life, 25, 100520. https://doi.org/10.1016/j.fpsl.2020.100520
Armingol Marro, M. Á. (2020). Caracterización y aplicabilidad de envases bio-basados en productos vegetales mínimamente procesados [Tesis pregrado, Universidad de Zaragoza]. https://zaguan.unizar.es/record/96458
Ashish, P. K., Sreeram, A., Xu, X., Chandrasekar, P., Jagadeesh, A., Adwani, D., & Padhan, R. K. (2023). Closing the Loop: Harnessing waste plastics for sustainable asphalt mixtures – A comprehensive review. Construction and Building Materials, 400, 132858. https://doi.org/10.1016/j.conbuildmat.2023.132858
Barlier, C., Abel, C., & Rennesson, J.-L. (2023). Applications for Packaging. En E. Pei, A. Bernard, D. Gu, C. Klahn, M. Monzón, M. Petersen, & T. Sun (Eds.), Springer Handbook of Additive Manufacturing (pp. 963-979). Springer International Publishing. https://doi.org/10.1007/978-3-031-20752-5_58
Baserinia, R., Brockbank, K., & Dattani, R. (2022). Correlating polyamide powder flowability to mechanical properties of parts fabricated by additive manufacturing. Powder Technology, 398, 117147. https://doi.org/10.1016/j.powtec.2022.117147
Bhunia, K., Sablani, S. S., Tang, J., & Rasco, B. (2013). Migration of Chemical Compounds from Packaging Polymers during Microwave, Conventional Heat Treatment, and Storage. Comprehensive Reviews in Food Science and Food Safety, 12(5), 523-545. https://doi.org/10.1111/1541-4337.12028
Buntinx, M., Willems, G., Knockaert, G., Adons, D., Yperman, J., Carleer, R., & Peeters, R. (2014). Evaluation of the Thickness and Oxygen Transmission Rate before and after Thermoforming Mono- and Multi-layer Sheets into Trays with Variable Depth. Polymers, 6(12), Article 12. https://doi.org/10.3390/polym6123019
Capkin, I., & Gokelma, M. (2023). A review on characterization and recyclability of pharmaceutical blisters. Cleaner Waste Systems, 4, 100082. https://doi.org/10.1016/j.clwas.2023.100082
astro-Landinez, J. F., Salcedo-Galan, F., & Medina-Perilla, J. A. (2021). Polypropylene/Ethylene—And Polar—Monomer-Based Copolymers/Montmorillonite Nanocomposites: Morphology, Mechanical Properties, and Oxygen Permeability. Polymers, 13(5), Article 5. https://doi.org/10.3390/polym13050705
Chi Caballero, J. F. (2020). Estudio del efecto de la modificación morfológica de películas sopladas de polipropileno con paligorskita sobre su permeabilidad a diferentes gases [Ph.D. Thesis, Centro de Investigación Científica de Yucatán A.C.]. https://cicy.repositorioinstitucional.mx/jspui/bitstream/1003/1741/1/PCM_D_Tesis_2020_Josue_Chi.pdf
Coba-Daza, S., Carmeli, E., Otaegi, I., Aranburu, N., Guerrica-Echevarria, G., Kahlen, S., Cavallo, D., Tranchida, D., & Müller, A. J. (2022). Effect of compatibilizer addition on the surface nucleation of dispersed polyethylene droplets in a self-nucleated polypropylene matrix. Polymer, 263, 125511. https://doi.org/10.1016/j.polymer.2022.125511
da Silva, D. J., de Oliveira, M. M., Wang, S. H., Carastan, D. J., & Rosa, D. S. (2022). Designing antimicrobial polypropylene films with grape pomace extract for food packaging. Food Packaging and Shelf Life, 34, 100929. https://doi.org/10.1016/j.fpsl.2022.100929
Dey, A., & Neogi, S. (2019). Oxygen scavengers for food packaging applications: A review. Trends in Food Science & Technology, 90, 26-34. https://doi.org/10.1016/j.tifs.2019.05.013
Drummond, C. F., Damas, M. S. P., Merlini, C., & Battisti, R. (2019). Influence of clarifying agent on the properties of polypropylene copolymer industrially injected cups for Brazilian cream cheese. International Journal of Plastics Technology, 23(2), 170-176. https://doi.org/10.1007/s12588-019-09245-4
Ebadi-Dehaghani, H., Barikani, M., Khonakdar, H. A., Jafari, S. H., Wagenknecht, U., & Heinrich, G. (2015). On O2 gas permeability of PP/PLA/clay nanocomposites: A molecular dynamic simulation approach. Polymer Testing, 45, 139-151. https://doi.org/10.1016/j.polymertesting.2015.05.010
Fasake, V., Shelake, P. S., Srivastava, A., & Dashora, K. (2021). Characteristics of Different Plastic Materials, Properties and their Role in Food Packaging. Current Nutrition & Food Science, 17(9), 944-954. https://doi.org/10.2174/1573401317666210505100139
Fortelný, I., & Juza, J. (2019). Description of the Droplet Size Evolution in Flowing Immiscible Polymer Blends. Polymers, 11(5), Article 5. https://doi.org/10.3390/polym11050761
Fuoco, A., Comesaña-Gándara, B., Longo, M., Esposito, E., Monteleone, M., Rose, I., Bezzu, C. G., Carta, M., McKeown, N. B., & Jansen, J. C. (2018). Temperature Dependence of Gas Permeation and Diffusion in Triptycene-Based Ultrapermeable Polymers of Intrinsic Microporosity. ACS Applied Materials & Interfaces, 10(42), 36475-36482. https://doi.org/10.1021/acsami.8b13634
Giacinti Baschetti, M., & Minelli, M. (2020). Test methods for the characterization of gas and vapor permeability in polymers for food packaging application: A review. Polymer Testing, 89, 106606. https://doi.org/10.1016/j.polymertesting.2020.106606
Giménez Torres, E. (2001). Desarrollo y caracterización de sistemas de alta barrera basados en un copolímero de etileno y alcohol vinílico (EVOH) para su aplicación en estructuras multicapa termoconformadas en la industrial del envasado [Ph.D. Thesis, Universitat Jaume I]. En TDX (Tesis Doctorals en Xarxa). https://www.tdx.cat/handle/10803/10559
Glicerina, V., Siroli, L., Gottardi, D., Ticchi, N., Capelli, F., Accorsi, R., Gherardi, M., Minelli, M., Fiorini, M., Andrisano, V., Colombo, V., Manzini, R., Lanciotti, R., & Romani, S. (2023). Influence of an innovative, biodegradable active packaging on the quality of sunflower oil and “pesto” sauce during storage. Applied Food Research, 3(2), 100313. https://doi.org/10.1016/j.afres.2023.100313
Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M., & Elharfi, A. (2021). Polymer composite materials: A comprehensive review. Composite Structures, 262, 113640. https://doi.org/10.1016/j.compstruct.2021.113640
Huang, H.-D., Ren, P.-G., Zhong, G.-J., Olah, A., Li, Z.-M., Baer, E., & Zhu, L. (2023). Promising strategies and new opportunities for high barrier polymer packaging films. Progress in Polymer Science, 144, 101722. https://doi.org/10.1016/j.progpolymsci.2023.101722
Idumah, C. I., Zurina, M., Ogbu, J., Ndem, J. U., & Igba, E. C. (2020). A review on innovations in polymeric nanocomposite packaging materials and electrical sensors for food and agriculture. Composite Interfaces, 27(1), 1-72. https://doi.org/10.1080/09276440.2019.1600972
Jagtiani, E. (2022). Advancements in nanotechnology for food science and industry. Food Frontiers, 3(1), 56-82. https://doi.org/10.1002/fft2.104
Keller, P. E., & Kouzes, R. T. (2017). Water Vapor Permeation in Plastics (PNNL-26070). Pacific Northwest National Lab. (PNNL), Richland, WA (United States). https://doi.org/10.2172/1411940
Kim, D., Thanakkasaranee, S., Lee, K., Sadeghi, K., & Seo, J. (2021). Smart packaging with temperature-dependent gas permeability maintains the quality of cherry tomatoes. Food Bioscience, 41, 100997. https://doi.org/10.1016/j.fbio.2021.100997
Kim, J.-K., Choi, B., & Jin, J. (2020). Transparent, water-stable, cellulose nanofiber-based packaging film with a low oxygen permeability. Carbohydrate Polymers, 249, 116823. https://doi.org/10.1016/j.carbpol.2020.116823
Korte, I., Albrecht, A., Mittler, M., Waldhans, C., & Kreyenschmidt, J. (2023). Quality impact of sustainable ma-packaging options for emulsion-type sausage: A German case study. Future Foods, 7, 100218. https://doi.org/10.1016/j.fufo.2023.100218
Lange, J., & Wyser, Y. (2003). Recent innovations in barrier technologies for plastic packaging—A review. Packaging Technology and Science, 16(4), 149-158. https://doi.org/10.1002/pts.621
Lara-Gómez, A. B., Aguirre-Loredo, R. Y., Castro-Rosas, J., Rangel-Vargas, E., Hernández-Juárez, M., & Gómez-Aldapa, C. A. (2022). Películas de almidón de papa (Solanum tuberosum L.), empaques innovadores para alimentos: Una revisión. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, 10(19), Article 19. https://doi.org/10.29057/icbi.v10i19.8965
Lasagabáster, A., Abad, M. J., Barral, L., Ares, A., & Bouza, R. (2009). Application of FTIR spectroscopy to determine transport properties and water–polymer interactions in polypropylene (PP)/poly(ethylene-co-vinyl alcohol) (EVOH) blend films: Effect of poly(ethylene-co-vinyl alcohol) content and water activity. Polymer, 50(13), 2981-2989. https://doi.org/10.1016/j.polymer.2009.04.005
Laz-Mero, M. L., Tuárez-Párraga, M. A., & Córdova-Mosquera, R. A. (2021). Estabilidad oxidativa del aceite de girasol en diferentes condiciones de almacenamiento. La Técnica: Revista de las Agrociencias. e-ISSN 2477-8982, 11(2), Article 2. https://doi.org/10.33936/la_tecnica.v0i26.4108
Li, Y., Li, L., & Yu, J. (2017). Applications of Zeolites in Sustainable Chemistry. Chem, 3(6), 928-949. https://doi.org/10.1016/j.chempr.2017.10.009
Li, Y., Zhang, K., Nie, M., & Wang, Q. (2020). Chapter 19—Application of compatibilized polymer blends in packaging. En A. A.r. & S. Thomas (Eds.), Compatibilization of Polymer Blends (pp. 539-561). Elsevier. https://doi.org/10.1016/B978-0-12-816006-0.00019-0
Lorini, A., Wobeto, C., Rosa, C. C. B. da, Hatem, T. A., & Botelho, S. de C. C. (2018). Influence of packaging on the quality of Brazil nuts. Acta Amazonica, 48(4), 368-372. https://doi.org/10.1590/1809-4392201701772
Mahand, S. N., Yazdanbakhsh, A., Tayouri, M. I., Zarei, A., Nouranian, S., Ruckdäschel, H., & Khonakdar, H. A. (2023). Theoretical and experimental investigation of selective gas permeability in polystyrene/polyolefin elastomer/nanoclay nanocomposite films. Polymer Testing, 120, 107960. https://doi.org/10.1016/j.polymertesting.2023.107960
McKeen, L. W. (2012). 1—Introduction to Permeation of Plastics and Elastomers. En Permeability Properties of Plastics and Elastomers (3era ed., pp. 1-20). William Andrew Publishing. https://doi.org/10.1016/B978-1-4377-3469-0.10001-3
Mueller, K., Schoenweitz, C., & Langowski, H.-C. (2012). Thin Laminate Films for Barrier Packaging Application – Influence of Down Gauging and Substrate Surface Properties on the Permeation Properties. Packaging Technology and Science, 25(3), 137-148. https://doi.org/10.1002/pts.966
Nejatian, M., Ghandehari Yazdi, A. P., Khorasani, S., & Simal-Gandara, J. (2023). Increasing the shelf life of fresh in-hull pistachio using nanocomposite packaging of zinc nanoparticles and pistachio green hull essential oil. Scientia Horticulturae, 313, 111888. https://doi.org/10.1016/j.scienta.2023.111888
Ouardi, A., Wahid, A., Sadoki, B., Mouhib, N., & ELghorba, M. (2022). Effect of residual stresses on the fracture of polypropylene (PPR) pipes. Theoretical and Applied Fracture Mechanics, 119, 103330. https://doi.org/10.1016/j.tafmec.2022.103330
Padmaja, P. G., Kalaisekar, A., Venkateswarlu, R., Shwetha, S., Rao, B. D., & Tonapi, V. A. (2023). Thermal treatment in combination with laminated packaging under modified atmosphere enhances the shelf life of pearl millet flour. Food Chemistry Advances, 2, 100190. https://doi.org/10.1016/j.focha.2023.100190
Panou, A., & Karabagias, I. K. (2023). Biodegradable Packaging Materials for Foods Preservation: Sources, Advantages, Limitations, and Future Perspectives. Coatings, 13(7), Article 7. https://doi.org/10.3390/coatings13071176
Prasad, K., Nikzad, M., & Sbarski, I. (2018). Permeability control in polymeric systems: A review. Journal of Polymer Research, 25(11), 232. https://doi.org/10.1007/s10965-018-1636-x
Priyanka, S., S, K. R. N., R. s., A. B., & John, A. (2023). Biocompatible green technology principles for the fabrication of food packaging material with noteworthy mechanical and antimicrobial properties—A sustainable developmental goal towards the effective, safe food preservation strategy. Chemosphere, 336, 139240. https://doi.org/10.1016/j.chemosphere.2023.139240
Rivadeneira-Velasco, K. E., Utreras-Silva, C. A., Díaz-Barrios, A., Sommer-Márquez, A. E., Tafur, J. P., & Michell, R. M. (2021). Green Nanocomposites Based on Thermoplastic Starch: A Review. Polymers, 13(19), Article 19. https://doi.org/10.3390/polym13193227
Shaikh, S., Yaqoob, M., & Aggarwal, P. (2021). An overview of biodegradable packaging in food industry. Current Research in Food Science, 4, 503-520. https://doi.org/10.1016/j.crfs.2021.07.005
Siracusa, V. (2012). Food Packaging Permeability Behaviour: A Report. International Journal of Polymer Science, 2012, e302029. https://doi.org/10.1155/2012/302029
Sothornvit, R. (2019). Nanostructured materials for food packaging systems: New functional properties. Current Opinion in Food Science, 25, 82-87. https://doi.org/10.1016/j.cofs.2019.03.001
Tariq, A., Afzal, A., Rashid, I. A., & Shakir, M. F. (2020). Study of thermal, morphological, barrier and viscoelastic properties of PP grafted with maleic anhydride (PP-g-MAH) and PET blends. Journal of Polymer Research, 27(10), 309. https://doi.org/10.1007/s10965-020-02291-2
Tuárez-Párraga, M. A., Laz-Mero, M., Castillo-Gorozabel, V., & Córdova-Mosquera, A. (2022a). Producción de empaques en polipropileno mediante inyección con colada fría y colada caliente. Avances En Química, 17(3), Article 3.
Tuárez-Párraga, M. A., Laz-Mero, M., Córdova-Mosquera, R. A., & Conforme-Montesdeoca, J. V. (2022b). Migración química desde envases fabricados con polipropileno hacia alimentos grasos. Revista ESPAMCIENCIA, 13(1), Article 1. https://doi.org/10.51260/revista_espamciencia.v13i1.286
Van Bree, I., De Meulenaer, B., Samapundo, S., Vermeulen, A., Ragaert, P., Maes, K. C., De Baets, B., & Devlieghere, F. (2010). Predicting the headspace oxygen level due to oxygen permeation across multilayer polymer packaging materials: A practical software simulation tool. Innovative Food Science & Emerging Technologies, 11(3), 511-519. https://doi.org/10.1016/j.ifset.2010.01.007
Villa, C. C., Valencia, G. A., López Córdoba, A., Ortega-Toro, R., Ahmed, S., & Gutiérrez, T. J. (2022). Zeolites for food applications: A review. Food Bioscience, 46, 101577. https://doi.org/10.1016/j.fbio.2022.101577
Williams, H., Lindström, A., Trischler, J., Wikström, F., & Rowe, Z. (2020). Avoiding food becoming waste in households – The role of packaging in consumers’ practices across different food categories. Journal of Cleaner Production, 265, 121775. https://doi.org/10.1016/j.jclepro.2020.121775
Wu, F., Misra, M., & Mohanty, A. K. (2021). Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Progress in Polymer Science, 117, 101395. https://doi.org/10.1016/j.progpolymsci.2021.101395
Xiao, Z., Li, L., Zhou, D., Xue, G., Yuan, Z., & Dai, Q. (2003). Isothermal crystallization of low ethylene content polypropylene random copolymer recovered from decalin and n-hexadecane. Thermochimica Acta, 404(1), 283-288. https://doi.org/10.1016/S0040-6031(03)00186-2
Xie, L.-G., Zhao, X., Dou, S.-H., Tang, L., & Sun, H.-M. (2019). A new standard reference film for oxygen gas transmission measurements. Royal Society Open Science, 6(4), 190142. https://doi.org/10.1098/rsos.190142
Zabihzadeh Khajavi, M., Ebrahimi, A., Yousefi, M., Ahmadi, S., Farhoodi, M., Mirza Alizadeh, A., & Taslikh, M. (2020). Strategies for Producing Improved Oxygen Barrier Materials Appropriate for the Food Packaging Sector. Food Engineering Reviews, 12(3), 346-363. https://doi.org/10.1007/s12393-020-09235-y
Zarshad, S., Naghib, S. M., Zare, Y., & Rhee, K. Y. (2022). A simple model for gas barrier performance of polymer nanocomposites considering filler alignment angle and diffusion direction. Composites Science and Technology, 230, 109397. https://doi.org/10.1016/j.compscitech.2022.109397
Zhong, Z., Peng, L., Zhang, N., Su, J., Ye, N., Luo, Z., Han, C. C., Huang, X., & Su, Z. (2022). Miscibility of isotactic polypropylene with random and block ethylene-octene copolymers studied by atomic force microscopy-infrared. Polymer, 259, 125354. https://doi.org/10.1016/j.polymer.2022.125354
Zubair, M., & Ullah, A. (2019). Recent advances in protein derived bionanocomposites for food packaging applications. Critical Reviews in Food Science and Nutrition, 60(3), 406-434. https://doi.org/10.1080/10408398.2018.1534800