Use of a Regenerated Catalyst from Fluid Catalytic Cracking for the Poly- (Ethylene Terephthalate) Chemical Recycling via Glycolysis

##plugins.themes.bootstrap3.article.main##

Juan Antonio Naranjo Silva

Paul Gustavo Palmay Paredes

Kerly Samantha Jaramillo Rivadeneira


Keywords:
Chemical Recycling, Glycolysis, Depolymerization, Catalyst Regeneration, poly-(ethylene terephthalate) (PET) Reciclaje químico, Despolimerización, Regeneración de Catalizadores, poli-(tereftalato de etileno) (PET), glicólisis

Abstract

The high demand for plastic materials has been a post-Covid-19 trend due to the need for protective and packaging materials for sanitary and food products. However, this situation has exacerbated the environmental problem associated with plastic waste pollution, which has led to intensified efforts to find recycling alternatives in recent years. The final disposal of catalysts used in petrochemicals also represents a significant challenge, as they end up in landfills and are a major source of contamination due to their high heavy metal content. This study aims to evaluate the use of regenerated FCC catalysts from petrochemical processes in the depolymerization process of poly-(ethylene terephthalate) by glycolysis. The results showed that the regenerated catalyst had a significant performance compared to conventional catalysts such as zinc acetate and ZSM-5 zeolite in obtaining bis (hydroxyethyl terephthalate) (BHET), and the amount of catalyst did not significantly affect the depolymerization process. These results show a promising option for addressing the problem of plastic waste.

##plugins.themes.revistapolitecnica.stadistisDownloadTitle##

Downloads

Download data is not yet available.




Article Details

##plugins.themes.revistapolitecnica.submission.authorBiographies##

Juan Antonio Naranjo Silva, Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Riobamba, Ecuador

Ingeniero Químico graduado en la Escuela Superior Politécnica de Chimborazo, Ecuador. Investigador externo en el Grupo de Energías Alternativas y Ambiente ESPOCH.

Paul Gustavo Palmay Paredes, Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Riobamba, Ecuador

Ingeniero Químico de la Escuela Superior Politécnica de Chimborazo, Máster en Ingeniería Termodinámica de Fluidos en la Universidad de la Roviri i Virgili - España, PhD en Ingeniería Termodinámica de Fluidos en la Roviri i Virgili-España.

Docente Investigador de la ESPOCH e Investigador Senior en el Grupo de Investigación de Ambiente y Desarrollo.

Kerly Samantha Jaramillo Rivadeneira, Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Riobamba, Ecuador

Ingeniera Química graduada en la Escuela Superior Politécnica de Chimborazo, Ecuador. Investigadora externa en el Grupo de Energías Alternativas y Ambiente ESPOCH.

References

Al-Sabagh, A. M., Yehia, F. Z., Eissa, A. M. F., Moustafa, M. E., Eshaq, G., Rabie, A. M., & Elmetwally, A. E. (2014). Cu- and Zn-acetate-containing ionic liquids as catalysts for the glycolysis of poly(ethylene terephthalate). Polymer Degradation and Stability, 110, 364–377. https://doi.org/10.1016/j.polymdegradstab.2014.10.005

Al-Sabagh, A. M., Yehia, F. Z., Eshaq, G., Rabie, A. M., & ElMetwally, A. E. (2016). Greener routes for recycling of polyethylene terephthalate. Egyptian Journal of Petroleum, 25(1), 53–64. https://doi.org/10.1016/J.EJPE.2015.03.001

Alvarado, M. (2021). Determinación de la influencia del tipo de catalizador en el rendimiento de reacción de glucólisis de poli tereftalato de etileno (PET) post-consumo. [Tesis de grado, Escuela Superior Politécnica de Chimborazo. Riobamba.]. Repositorio DSPACE Espoch. http://dspace.espoch.edu.ec/handle/123456789/16763

Amiri, F., Yaghmaei, S., Mousavi, S. M., & Sheibani, S. (2011). Recovery of metals from spent refinery hydrocracking catalyst using adapted Aspergillus niger. Hydrometallurgy, 109(1–2), 65–71. https://doi.org/10.1016/J.HYDROMET.2011.05.008

Andrade Avila, L. (2020). Regeneración de catalizadores agotados de la unidad de Cracking Catalítico Fluidizado (FCC) de refinería, para su utilización en pirólisis catalítica. [Tesis de grado, Escuela Superior Politécnica de Chimborazo]. Repositorio DSpace Espoch. http://dspace.espoch.edu.ec/handle/123456789/16707

Bahramian, A. (2021). Synergistic effects of gamma irradiation on the PET surface and heat treatment of hydrotalcite catalyst supported by Pt/TiO2 nanoparticles on PET depolymerization rate. Surface and Interface Analysis, 53(2), 215–229. https://doi.org/10.1002/sia.6903

Berenguer, D., Marcilla, A., & Go, A. (2006). Study of the influence of the characteristics of different acid solids in the catalytic pyrolysis of different polymers. Applied Catalysis A: General, 301(2), 222–231. https://doi.org/10.1016/j.apcata.2005.12.018

Bertolotti, B., Rospigliosp, C., & Nakamatsu, J. (2005). Poliésteres y Reciclaje Químico del Poli(tereftalato de etileno). Revista de Química, 19(1), 13–20. https://revistas.pucp.edu.pe/index.php/quimica/article/view/18726

Bhoi, P. R., & Rahman, M. H. (2022). Hydrocarbons recovery through catalytic pyrolysis of compostable and recyclable waste plastics using a novel desk-top staged reactor. Environmental Technology & Innovation, 27, 102453. https://doi.org/10.1016/J.ETI.2022.102453

Che, Q., Yang, M., Wang, X., Yang, Q., Rose Williams, L., Yang, H., Zou, J., Zeng, K., Zhu, Y., Chen, Y., & Chen, H. (2019). Influence of physicochemical properties of metal modified ZSM-5 catalyst on benzene, toluene and xylene production from biomass catalytic pyrolysis. Bioresource Technology, 278, 248–254. https://doi.org/10.1016/J.BIORTECH.2019.01.081

Coelho, A., Costa, L., Marques, M. M., Fonseca, I. M., Lemos, M. A. N. D. A., & Lemos, F. (2012). The effect of ZSM-5 zeolite acidity on the catalytic degradation of high-density polyethylene using simultaneous DSC/TG analysis. Applied Catalysis A: General, 413–414, 183–191. https://doi.org/10.1016/j.apcata.2011.11.010

Esquer, R., & García, J. J. (2019). Metal-catalysed Poly(Ethylene) terephthalate and polyurethane degradations by glycolysis. Journal of Organometallic Chemistry, 902, 120972. https://doi.org/10.1016/j.jorganchem.2019.120972

Fuentes, C. A., Gallegos, M. V., García, J. R., Sambeth, J., & Peluso, M. A. (2020). Catalytic Glycolysis of Poly (ethylene terephthalate) Using Zinc and Cobalt Oxides Recycled from Spent Batteries. Waste and Biomass Valorization, 11(9), 4991–5001. https://doi.org/10.1007/s12649-019-00807-6

Gonzalez, M. R., Pereyra, A. M., & Basaldella, E. I. (2015). Reconversión de catalizadores agotados de FCC para su uso en purificación de efluentes acuosos. Investigación Joven, 2(2), 86-87. http://sedici.unlp.edu.ar/handle/10915/51259

Han, Y., Yu, J., Chen, T., Liu, X., & Sun, L. (2021). Study on catalytic pyrolysis mechanism of natural rubber (NR) over Zn-modified ZSM5 catalysts. Journal of the Energy Institute, 94, 210–221. https://doi.org/10.1016/J.JOEI.2020.09.005

Idriss, h., & barteau, m. (2000). Active Sites on Oxides: From Single Crystals to Catalysts. Advances in Catalysis, 45(M), 261–331. https://doi.org/10.1016/s0360-0564(02)45015-8

Kassargy, C., Awad, S., Burnens, G., Kahine, K., & Tazerout, M. (2017). Experimental study of catalytic pyrolysis of polyethylene and polypropylene over USY zeolite and separation to gasoline and diesel-like fuels. Journal of Analytical and Applied Pyrolysis, 127, 31–37. https://doi.org/10.1016/J.JAAP.2017.09.005

Mendiburu-Valor, E., Mondragon, G., González, N., Kortaberria, G., Eceiza, A., & Peña-Rodriguez, C. (2021). Improving the efficiency for the production of bis-(2-hydroxyethyl) terephtalate (BHET) from the glycolysis reaction of poly(ethylene terephtalate) (PET) in a pressure reactor. Polymers, 13(9), 1461. https://doi.org/10.3390/polym13091461

Palmay, P., Alvarado, M & Sánchez, M. (2022a). Influencia del tipo de catalizador en el rendimiento de reacción de glucólisis de poli Tereftalato de etileno (pet) post consumo. Perfiles, 1(28), 6–13. https://doi.org/10.47187/perf.v1i28.172

Palmay, P., Medina, C., Donoso, C., Barzallo, D., & Bruno, J. C. (2022b). Catalytic pyrolysis of recycled polypropylene using a regenerated FCC catalyst. Clean Technologies and Environmental Policy, 1, 7–11. https://doi.org/10.1007/S10098-022-02453-4/FIGURES/7

Raheem, A. B., Noor, Z. Z., Hassan, A., Abd Hamid, M. K., Samsudin, S. A., & Sabeen, A. H. (2019). Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: A review. Journal of Cleaner Production, 225, 1052–1064. https://doi.org/10.1016/j.jclepro.2019.04.019

Ramirez, A., Navarro, L. G., & Conde, J. C. (2010). Degradación química del poli (etilen tereftalato). Revista Colombiana de Química, 39(3), 321–331. https://revistas.unal.edu.co/index.php/rcolquim/article/view/20354

Sánchez, G. M. (2018). Degradación catalítica de polietileno de baja densidad utilizando catalizadores de FCC. [Tesis de maestría, Instituto Politécnico Nacional]. Repositorio DSPACE IPN. http://tesis.ipn.mx/xmlui/handle/123456789/24873

Sangalang, A., Bartolome, L., & Kim, D. H. (2015). Generalized kinetic analysis of heterogeneous PET glycolysis: Nucleation-controlled depolymerization. Polymer Degradation and Stability, 115, 45–53. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2015.02.012

Sheel, A., & Pant, D. (2019). Chemical Depolymerization of PET Bottles via Glycolysis. Recycling of Polyethylene Terephthalate Bottles 61-94. https://doi.org/10.1016/B978-0-12-811361-5.00004-3

Shurvell, H. F. (2006). Spectra – Structure Correlations Spectra – Structure Correlations in the Mid- and Far-infrared. https://doi.org/10.1002/9780470027325.s4101

Stoski, A., Viante, M. F., Nunes, C. S., Muniz, E. C., Felsner, M. L., & Almeida, C. A. P. (2016). Oligomer production through glycolysis of poly(ethylene terephthalate): effects of temperature and water content on reaction extent. Polymer International, 65(9), 1024–1030. https://doi.org/10.1002/pi.5146

Wang, T., Liu, H., Zhang, X., Liu, J., Zhang, Y., Guo, Y., & Sun, B. (2018). Catalytic conversion of NO assisted by plasma over Mn-Ce/ZSM5-multi-walled carbon nanotubes composites: Investigation of acidity, activity, and stability of catalyst in the synergic system. Applied Surface Science, 457, 187–199. https://doi.org/10.1016/J.APSUSC.2018.06.216

Wang, T., Shen, C., Yu, G., & Chen, X. (2021). Fabrication of magnetic bimetallic Co–Zn based zeolitic imidazolate frameworks composites as catalyst of glycolysis of mixed plastic. Fuel, 304(April), 121397. https://doi.org/10.1016/j.fuel.2021.121397

Xi, G., Lu, M., & Sun, C. (2005). Study on depolymerization of waste polyethylene terephthalate into monomer of bis(2-hydroxyethyl terephthalate). Polymer Degradation and Stability, 87(1), 117–120. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2004.07.017

Zhang, H., Choi, J. I., Choi, J. W., Jeong, S. M., Lee, P. S., & Hong, D. Y. (2022). A highly porous MgAl2O4 spinel-supported Mn3O4 as a reusable catalyst for glycolysis of postconsumer PET waste. Journal of Industrial and Engineering Chemistry, 115, 251–262. https://doi.org/10.1016/J.JIEC.2022.08.006

Zhao, X., Wei, L., Cheng, S., Huang, Y., Yu, Y., & Julson, J. (2015). Catalytic cracking of camelina oil for hydrocarbon biofuel over ZSM-5-Zn catalyst. Fuel Processing Technology, 139, 117–126. https://doi.org/10.1016/J.FUPROC.2015.07.033

Zheng, Y., Wang, F., Yang, X., Huang, Y., Liu, C., Zheng, Z., & Gu, J. (2017). Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5. Journal of Analytical and Applied Pyrolysis, 126, 169–179. https://doi.org/10.1016/J.JAAP.2017.06.011