Use of Unrestricted Minimization of a Spectral Function to Estimate the Visible Zone in Matlab 19.0

##plugins.themes.bootstrap3.article.main##

Reynaldo Quispe

Verónica Juli


Keywords:
Turbidez por aerosoles, función espectral, corrección de Armijo, zona Vis, minimización irrestricta Aerosol turbidity, spectral function, Armijo correction, Vis zone, unrestricted minimization

Abstract

Due to the simplicity and wide applicability, unrestricted minimization in the visible zone (Vis) is an important tool to solve many optimization problems of parameters and operating conditions of photovoltaic systems. The purpose of this work is to use unrestricted minimization of a simplified objective function E to estimate the Vis zone. We used a quantitative method and a documentary technique, analyzing a sample of 34 Vis experimental data from the Heredia University station. The parametric method was applied by means of the Matlab 19.0 Software, specifically through the minimization of a mathematical model employing the basic algorithm with Armijo correction using backtracking. The result obtained is a feasible optimizer of E in 33 iterations, which determined a transfer model of the Vis zone of aerosol turbidity 3.69x10-2 and ozone layer (l) 57.40x10-2 cm with statistical parameters of uncertainty 0.132%, 2.066% for the relative mean bias error (rMBE) and relative root mean square error (rRMSE) respectively. It is concluded that the atmosphere of the Heredia University presents a cloudy alternating white sky without an ozone hole.


 

##plugins.themes.revistapolitecnica.stadistisDownloadTitle##

Downloads

Download data is not yet available.




Article Details

References

Abunima, H., Teh, J., & Jabir, H. J. (2019). A new solar radiation model for a power system reliability study. IEEE Access, 7, 64758–64766. https://doi.org/10.1109/ACCESS.2019.2916168

Alamatsaz, K., Fatemi Ghomi, S. M. T., & Iranpoor, M. (2021). Minimal covering unrestricted location of obnoxious facilities: bi-objective formulation and a case study. OPSEARCH, 58(2), 351–373. https://doi.org/10.1007/s12597-020-00487-0

Alghamdi, A. S. (2023). Optimal Power Flow of Hybrid Wind/Solar/Thermal Energy Integrated Power Systems Considering Costs and Emissions via a Novel and Efficient Search Optimization Algorithm. Applied Sciences (Switzerland), 13(8). https://doi.org/10.3390/app13084760

Aliyeva, Y. N., Mammadova, K. A., & Huseynova, A. N. (2022). A Theoretical Model of RGB Attenuation of Solar Radiation Components Under Strong Aerosol Pollution of the Atmosphere. Aerosol Science and Engineering, 1-4. https://doi.org/10.1007/s41810-021-00120-7

Bai, J., & Zong, X. (2021). Global solar radiation transfer and its loss in the atmosphere. Applied Sciences (Switzerland), 11(6). https://doi.org/10.3390/app11062651

Basith, A., Ulin Nuha, M., Prastyani, R., & Winarso, G. (2019). COMMUNICATIONS IN SCIENCE AND TECHNOLOGY Aerosol optical depth (AOD) retrieval for atmospheric correction in Landsat-8 imagery using second simulation of a satellite signal in the solar spectrum-vector (6SV). In Communications in Science and Technology (Vol. 4, Issue 2). https://earthexplorer.usgs.gov/

Bosca Berga, J. V. (1995). Contribucion al estudio de la radiacion solar y de la determinacion de la turbiedad atmosferica. Aplicacion a Valencia y Sevilla. [Universitat Politècnica de València]. In Riunet. https://doi.org/10.4995/Thesis/10251/4502

Borah, P., & Gupta, D. (2020). Unconstrained convex minimization based implicit Lagrangian twin extreme learning machine for classification (ULTELMC). Applied Intelligence, 50(4), 1327–1344. https://doi.org/10.1007/s10489-019-01596-0

Costa, R. S., Martins, F. R., & Pereira, E. B. (2012). Aerossóis atmosféricos e a quantificação do recurso energético solar: experimentos em modelo de transferência radiativa. Revista Brasileira de Energia Solar, 3(1), 62-62. https://doi.org/10.59627/rbens.2012v3i1.79

Cox, J. L., Hamilton, W. T., Newman, A. M., Wagner, M. J., & Zolan, A. J. (2023). Real-time dispatch optimization for concentrating solar power with thermal energy storage. Optimization and Engineering, 24(2), 847–884. https://doi.org/10.1007/s11081-022-09711-w

de Wijn, A. G., Casini, R., Carlile, A., Lecinski, A. R., Sewell, S., Zmarzly, P., Eigenbrot, A. D., Beck, C., Wöger, F., & Knölker, M. (2022). The Visible Spectro-Polarimeter of the Daniel K. Inouye Solar Telescope. Solar Physics, 297(2). https://doi.org/10.1007/s11207-022-01954-1

Di Pietro, S. (2022). Processes of urban transition to autonomous decentralized systems of renewable energy. Estudios Demograficos y Urbanos, 37(3), 807–837. https://doi.org/10.24201/edu.v37i3.2073

Drozdowski, M., & Shakhlevich, N. V. (2021). Scheduling divisible loads with time and cost constraints. Journal of Scheduling, 24(5), 507–521. https://doi.org/10.1007/s10951-019-00626-6

Duan, Z., Yu, H., Zhang, Q., & Tian, L. (2023). Parameter Extraction of Solar Photovoltaic Model Based on Nutcracker Optimization Algorithm. Applied Sciences (Switzerland), 13(11). https://doi.org/10.3390/app13116710

Dwail, H. H., & Shiker, M. A. K. (2020). Using a trust region method with nonmonotone technique to solve unrestricted optimization problem. Journal of Physics: Conference Series, 1664(1). https://doi.org/10.1088/1742-6596/1664/1/012128

Emiola, I., Adem, R. (Junio, 2021). Comparison of Minimization Methods for Rosenbrock Functions. Work presented at 2021 29th Mediterranean Conference on Control and Automation (MED), PUGLIA, pp. 837-842. https://doi.org/10.1109/MED51440.2021.9480200

Eslami, M., Akbari, E., Seyed Sadr, S. T., & Ibrahim, B. F. (2022). A novel hybrid algorithm based on rat swarm optimization and pattern search for parameter extraction of solar photovoltaic models. Energy Science and Engineering, 10(8), 2689–2713. https://doi.org/10.1002/ese3.1160

Farag, M. M., Patel, N., Hamid, A. K., Adam, A. A., Bansal, R. C., Bettayeb, M., & Mehiri, A. (2023). An Optimized Fractional Nonlinear Synergic Controller for Maximum Power Point Tracking of Photovoltaic Array under Abrupt Irradiance Change. IEEE Journal of Photovoltaics, 13(2), 305–314. https://doi.org/10.1109/JPHOTOV.2023.3236808

Fei, L., Yin, Y., Yang, M., Zhang, S., & Wang, C. (2021). Wearable solar energy management based on visible solar thermal energy storage for full solar spectrum utilization. Energy Storage Materials, 42, 636–644. https://doi.org/10.1016/j.ensm.2021.07.049

Ferry, M. W., Gill, P. E., Wong, E., & Zhang, M. (2021). Projected-Search Methods for Bound-Constrained Optimization. http://arxiv.org/abs/2110.08359

Filos-Ratsikas, A., Kanellopoulos, P., Voudouris, A. A., & Zhang, R. (2023). Settling the Distortion of Distributed Facility Location. http://arxiv.org/abs/2301.01604

Franc, V., Yermakov, A., Balasubramanian, V. N., & Tsang, I. (2021). Learning Maximum Margin Markov Networks from examples with missing labels. In Proceedings of Machine Learning Research (Vol. 157)

Ghosh, S., Acharya, T., & Maity, S. P. (2019). On outage minimization in RF energy harvesting relay assisted bidirectional communication. Wireless Networks, 25(7), 3867–3881. https://doi.org/10.1007/s11276-018-01924-1

Gueymard, C. A., & Kambezidis, H. D. (2004). SOLAR RADIATION AND DAYLIGHT MODELS. In Solar Spectral Radiation (pp. 221-301). Elsevier. https://doi.org/10.1016/B978-075065974-1/50013-9

Hamilton, W. T., Husted, M. A., Newman, A. M., Braun, R. J., & Wagner, M. J. (2020). Dispatch optimization of concentrating solar power with utility-scale photovoltaics. Optimization and Engineering, 21(1), 335–369. https://doi.org/10.1007/s11081-019-09449-y

Hoque, A., & Islam, M. T. (2020). Numerical Analysis of Single Negative Broadband Metamaterial Absorber Based on Tri Thin Layer Material in Visible Spectrum for Solar Cell Energy Harvesting. Plasmonics, 15(4), 1061–1069. https://doi.org/10.1007/s11468-020-01132-8

Ilango, R., Loff, B., & Oliveira, I. C. (2020). NP-Hardness of circuit minimization for multi-output functions. Leibniz International Proceedings in Informatics, LIPIcs, 169. https://doi.org/10.4230/LIPIcs.CCC.2020.22

Iqbal, M. (1983). A CLOUDLESS-SKY ATMOSPHERE AND ITS OPTICS. In An Introduction to Solar Radiation (pp. 85–105). Elsevier. https://doi.org/10.1016/b978-0-12-373750-2.50010-0

Jiang, H., & Dong, Y. (2016). A nonlinear support vector machine model with hard penalty function based on glowworm swarm optimization for forecasting daily global solar radiation. Energy Conversion and Management, 126, 991–1002. https://doi.org/10.1016/j.enconman.2016.08.069

Kairouz, P., Ribero, M., Rush, K., & Thakurta, A. (2020). Fast dimension independent private adagrad on publicly estimated subspaces. arXiv preprint arXiv:2008.06570

Lefèvre, M., Oumbe, A., Blanc, P., Espinar, B., Gschwind, B., Qu, Z., Wald, L., Schroedter-Homscheidt, M., Hoyer-Klick, C., Arola, A., Benedetti, A., Kaiser, J. W., & Morcrette, J. J. (2013). McClear: A new model estimating downwelling solar radiation at ground level in clear-sky conditions. Atmospheric Measurement Techniques, 6(9), 2403–2418. https://doi.org/10.5194/amt-6-2403-2013

Li, J., Qin, C., Yang, C., Ai, B., & Zhou, Y. (2023). Extraction of Single Diode Model Parameters of Solar Cells and PV Modules by Combining an Intelligent Optimization Algorithm with Simplified Explicit Equation Based on Lambert W Function. Energies, 16(14). https://doi.org/10.3390/en16145425

Li, Y., Liu, Z., & Liu, H. (2019). A subspace minimization conjugate gradient method based on conic model for unconstrained optimization. Computational and Applied Mathematics, 38(1). https://doi.org/10.1007/s40314-019-0779-7

Lisenko, S. A. (2018). Atmospheric correction of multispectral satellite images based on the solar radiation transfer approximation model. Atmospheric and Oceanic Optics, 31(1), 72–85. https://doi.org/10.1134/S1024856018010116

Manoharan, H., Teekaraman, Y., Kuppusamy, R., & Radhakrishnan, A. (2021). A Novel Optimal Robotized Parking System Using Advanced Wireless Sensor Network. Journal of Sensors, 2021. https://doi.org/10.1155/2021/2889504

Masoom, A., Kosmopoulos, P., Bansal, A., & Kazadzis, S. (2020). Solar energy estimations in india using remote sensing technologies and validation with sun photometers in urban areas. Remote Sensing, 12(2). https://doi.org/10.3390/rs12020254

Mims, F. M. (2022). A 30-Year Climatology (1990-2020) of Aerosol Optical Depth and Total Column Water Vapor and Ozone over Texas. Bulletin of the American Meteorological Society, 103(1), E101–E109. https://doi.org/10.1175/BAMS-D-21-0010.1

Paixão, D. F. S., Quirino, P. P. S., Fialho, R. L., Americano Da Costa, M. V., & Pontes, K. V. (2023). A dynamic optimization approach for a multi-effect desalination (MED) integrated with thermosolar storage system. Solar Energy, 262. https://doi.org/10.1016/j.solener.2023.111837

Premkumar, M., Shankar, N., Sowmya, R., Jangir, P., Kumar, C., Abualigah, L., & Derebew, B. (2023). A reliable optimization framework for parameter identification of single-diode solar photovoltaic model using weighted velocity-guided grey wolf optimization algorithm and Lambert-W function. IET Renewable Power Generation, 17(11), 2711–2732. https://doi.org/10.1049/rpg2.12792

Stefanov, S. M. (2021). Numerical solution of some systems of nonlinear algebraic equations. Journal of Interdisciplinary Mathematics, 24(6), 1545–1564. https://doi.org/10.1080/09720502.2020.1833462

Stutzmann, M., & Csoklich, C. (2022). The Physics of Renewable Energy Graduate Texts in Physics. https://doi.org/10.1007/978-3-031-17724-8

Upadhyay, V. A., Geisler, B. P., Sun, L., Uhl, L., Kaufman, R. M., Stowell, C., Makar, R. S., & Bendapudi, P. K. (2019). Utilizing a PLASMIC score-based approach in the management of suspected immune thrombotic thrombocytopenic purpura: a cost minimization analysis within the Harvard TMA Research Collaborative. British Journal of Haematology, 186(3), 490–498. https://doi.org/10.1111/bjh.15932

Wen, T. H., Chuang, T. W., & Tipayamongkholgul, M. (Eds.). (2023). Earth Data Analytics for Planetary Health. Springer Nature

Wright, J. (2003). Validación experimental de un modelo espectral para la radiación solar directa en condiciones de cielos claros. Top. Meteoro. Oceanog, 10(2), 47-56.

Wu, H., & Dumitrescu, S. (2020). Design of General Entropy-Constrained Successively Refinable Unrestricted Polar Quantizer. IEEE Transactions on Communications, 68(6), 3369–3385. https://doi.org/10.1109/TCOMM.2020.2979113

Zakinyan, R., & Zakinyan, A. (Eds.). (2023). Physics of the Atmosphere, Climatology and Environmental Monitoring. Springer International Publishing. https://doi.org/10.1007/978-3-031-19012-4

Zo, I. S., Jee, J. B., & Lee, K. T. (2014). Development of GWNU (Gangneung-Wonju National University) one-layer transfer model for calculation of solar radiation distribution of the Korean peninsula. Asia-Pacific Journal of Atmospheric Sciences, 50(1), 575–584. https://doi.org/10.1007/s13143-014-0047-0