Effects of cardboard and recycled ceramics on the properties of hydraulic concrete
##plugins.themes.bootstrap3.article.main##
Abstract
The problem of hydraulic concrete in open channels stems from design factors, poor construction, and adverse weather conditions that make the concrete less durable and prone to developing surface defects that weaken its physical and mechanical strength. The study looked at the effect of cardboard ash (CC) and recycled ceramic (RC) on the physical and mechanical properties of hydraulic concrete. The research was of experimental design, which included tests of water absorption, permeability, compressive strength and flexural strength. Different combinations were used to replace cement in proportions of CC 1.5 % + RC 1 %, CC 3 % + RC 2 %, CC 4.5 % + RC 3 %, and CC 6 % + RC 4 %, which were then compared to the ASTM standard and a control sample. The results indicated a water absorption of 0.061 g/s and a permeability of 297.09 g/m2, both lower and lower. The highest mechanical strength at 7, 14 and 28 days reached compressive strengths of 191.75 ± 1.22 kg/cm2, 274.38 ± 3.06 kg/cm2, 323.34 ± 6.85 kg/cm2, and flexural resistance of 31.32 ± 0.04 kg/cm2, 33.23 ± 0.16 kg/cm2 and 35.76 ± 0.31 kg/cm2. It is concluded that the optimal combination for physical and mechanical tests is achieved with the combination of CC 3 % and CR 2 %; for a greater amount of CC and CR with respect to the optimal sample, the concrete tends to deteriorate and lose strength.
##plugins.themes.revistapolitecnica.stadistisDownloadTitle##
Downloads
Article Details
References
Abubakar Tadda, M., Ahsan, A., Imteaz, M., Shitu, A., Abdulbaki Danhassan, U., & Idris Muhammad, A. (2020). Operation and Maintenance of Hydraulic Structures. In Hydraulic Structures - Theory and Applications. IntechOpen. https://doi.org/10.5772/intechopen.91949
ACI PRC-522 R-10 American Concrete Institute. (2011). Report on Pervious Concrete (Reapproved 2011). https://www.concrete.org/store/productdetail.aspx?ItemID=52210&Format=PROTECTED_PDF&Language=English&Units=US_AND_METRIC
ACI-211.1 American Concreto Institute®. (2002, August 9). Diseño de mezclas Método ACI. https://www.concrete.org/topicsinconcrete/topicdetail/metodo%20aci%20211?search=metodo%20aci%20211
Alhazmi, H., Shah, S. A. R., Anwar, M. K., Raza, A., Ullah, M. K., & Iqbal, F. (2021). Utilization of Polymer Concrete Composites for a Circular Economy: A Comparative Review for Assessment of Recycling and Waste Utilization. Polymers, 13(13), 2135. https://doi.org/10.3390/polym13132135
Amin, M., Agwa, I. S., Mashaan, N., Mahmood, S., & Abd-Elrahman, M. H. (2023). Investigation of the Physical Mechanical Properties and Durability of Sustainable Ultra-High Performance Concrete with Recycled Waste Glass. Sustainability, 15(4), 3085. https://doi.org/10.3390/su15043085
ASTM C33/CMMM-18. (2018, April 20). Standard Specification for Concrete Aggregates. https://www.astm.org/c0033_c0033m-18.html
ASTM C39/C39M-21. (2021, March 9). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. https://www.astm.org/c0039_c0039m-21.html
ASTM C78/C78M. (2022, March 30). Standard Test for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). https://www.astm.org/c0078_c0078m-22.html
ASTM C1585-20. (2020, September 22). Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. https://www.astm.org/c1585-20.html
ASTM D854-14. (2023, May 15). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer (Withdrawn 2023). https://www.astm.org/d0854-14.html
Barrios, A. M., Vega, D. F., Martínez, P. S., Atanes-Sánchez, E., & Fernández, C. M. (2021). Study of the properties of lime and cement mortars made from recycled ceramic aggregate and reinforced with fibers. Journal of Building Engineering, 35, 102097. https://doi.org/10.1016/j.jobe.2020.102097
Brahimi, A., Meghachou, M., Abbad, H., Rahmouni, A., Chebout, R., Bachari, K., Zohra Zeggai, F., & Belbachir, M. (2022). Structural and Chemical Analysis of New Cement Based on Eggshells and Sand from Dunes (Southern West of Algeria) Stabilized by PET. In Sustainability of Concrete With Synthetic and Recycled Aggregates. IntechOpen. https://doi.org/10.5772/intechopen.98346
de Matos, P. R., Sakata, R. D., Onghero, L., Uliano, V. G., de Brito, J., Campos, C. E. M., & Gleize, P. J. P. (2021). Utilization of ceramic tile demolition waste as supplementary cementitious material: An early-age investigation. Journal of Building Engineering, 38, 102187. https://doi.org/10.1016/j.jobe.2021.102187
Demissew Gashahun, A. (2022). Production of Sustainable Concrete by Using Challenging Environmentally Friendly Materials Instead of Cement. In Sustainability of Concrete With Synthetic and Recycled Aggregates. IntechOpen. https://doi.org/10.5772/intechopen.99239
Fernández-Torrez, L. A., Aquino-Rocha, J. H., & Cayo-Chileno, N. G. (2022). Análisis de las propiedades físicas y mecánicas del residuo de caucho de neumático como reemplazo parcial del agregado fino en el hormigón. Revista Hábitat Sustentable, 12(2), 52–65. https://doi.org/10.22320/07190700.2022.12.02.04
IRAM1871. (2021, April 6). Hormigón. Método de ensayo para determinar la capacidad y velocidad de succión capilar de agua del hormigón endurecido. 2da Edición. https://catalogo.iram.org.ar/#/normas/detalles/9219
Li, L., Liu, Q., Huang, T., & Peng, W. (2022). Mineralization and utilization of CO2 in construction and demolition wastes recycling for building materials: A systematic review of recycled concrete aggregate and recycled hardened cement powder. Separation and Purification Technology, 298, 121512. https://doi.org/10.1016/j.seppur.2022.121512
Menegaki, M., & Damigos, D. (2018). A review on current situation and challenges of construction and demolition waste management. Current Opinion in Green and Sustainable Chemistry, 13, 8–15. https://doi.org/10.1016/j.cogsc.2018.02.010
Ministerio de Transporte y Comunicaciones E-107-200. (2016, May). Manual de ensayo de materiales. https://www.gob.pe/institucion/mtc/normas-legales
NTP 339.034. (2021, November 15). CONCRETO. Determinación de la resistencia a la compresión del concreto en muestras cilíndricas. Método de ensayo. 5a Edición. https://www.inacal.gob.pe/cid/categoria/normas-tecnicas-peruanas
NTP 339.078. (2022, March 24). Determinación de la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios de la distancia entre apoyos. Método de ensayo. 4a Edición. https://www.inacal.gob.pe/cid/categoria/normas-tecnicas-peruanas
Paul, S. C., Babafemi, A. J., Miah, M. J., Basit, M. A., Hasan, N. Md. S., & Kong, S. Y. (2022). Role of Sugarcane Juice as a Natural Admixture on Setting Time and Hardened Properties of Cementitious Materials. Infrastructures, 7(10), 145. https://doi.org/10.3390/infrastructures7100145
Saad, B., Hameed, Z., & Khadary, F. (2020). Evaluate the performance of using new materials in rigid concrete pavement. International Journal of Civil Engineering, 7(9), 37–45. https://doi.org/10.14445/23488352/IJCE-V7I9P106
Sadagopan, M., Rivera, A. O., Malaga, K., & Nagy, A. (2023). Recycled Fine and Coarse Aggregates’ Contributions to the Fracture Energy and Mechanical Properties of Concrete. Materials, 16(19), 6437. https://doi.org/10.3390/ma16196437
Salih, M. A., Ahmed, S. K., Alsafi, S., Abullah, M. M. A. B., Jaya, R. P., Abd Rahim, S. Z., Aziz, I. H., & Thanaya, I. N. A. (2022). Strength and Durability of Sustainable Self-Consolidating Concrete with High Levels of Supplementary Cementitious Materials. Materials, 15(22), 7991. https://doi.org/10.3390/ma15227991
Solahuddin, B. A., & Yahaya, F. M. (2021). Effect of Shredded Waste Paper on Properties of Concrete. IOP Conference Series: Earth and Environmental Science, 682(1), 012006. https://doi.org/10.1088/1755-1315/682/1/012006
Zhang, P., Sun, X., Wang, F., & Wang, J. (2023). Mechanical Properties and Durability of Geopolymer Recycled Aggregate Concrete: A Review. Polymers, 15(3), 615. https://doi.org/10.3390/polym15030615