Optimización Simultanea de los Parámetros de Esquemas de Desconexión Automática de Carga y Convertidores Grid-forming

##plugins.themes.bootstrap3.article.main##

José M. Valles

Francisco Gonzalez-Longatt

José Miguel Riquelme-Dominguez

César Angeles-Camacho


Palabras clave:
Optimization, Under Frequency Load Shedding, Converters, Grid-forming Optimización, Disparo Automático de Carga, Convertidores, Grid-forming

Resumen

Al reemplazar la generación síncrona con generación basada en convertidores, se reduce la inercia rotacional disponible en el sistema eléctrico. Esta disminución de inercia modifica el comportamiento dinámico del sistema, lo que provoca cambios más pronunciados en la frecuencia del mismo y aumenta la posibilidad de activar esquemas de disparo automático de carga (DAC). Con el fin de evitar la disminución de la inercia rotacional, en la literatura se han elaborado esquemas de control para los convertidores que emulan el comportamiento de las máquinas síncronas, conocidos como controles grid-forming. Este artículo presenta una metodología general que permite optimizar simultáneamente los parámetros de los esquemas DAC y convertidores grid-forming en sistemas de baja inercia rotacional. El objetivo es minimizar la carga disparada durante eventos de baja frecuencia. Se presentan dos aportaciones: la primera es el procedimiento para evaluar la función objetivo, que consiste en evaluarla mediante el uso de resultados de una simulación en el dominio del tiempo; la segunda es la integración de parámetros de control grid-forming al problema de optimización, con el fin de aprovechar la respuesta rápida de los convertidores y proporcionar una respuesta más eficiente ante eventos de baja frecuencia. La metodología ha sido validada mediante diversos casos de estudio desarrollados usando el sistema de potencia tradicional de 9 barras, presentado originalmente en el libro de P.M. Anderson. Los resultados obtenidos corroboran que la metodología propuesta reduce la activación del esquema DAC durante un evento de baja frecuencia.


 

Descargas

Descargas

Los datos de descargas todavía no están disponibles.




Detalles del artículo

Citas

Acosta, M. N., Gonzalez-Longatt, F., Denysiuk, S., & Strelkova, H. (2020). Optimal Settings of Fast Active Power Controller: Nordic Case. 2020 IEEE 7th International Conference on Energy Smart Systems, ESS 2020 - Proceedings, 63–67. https://doi.org/10.1109/ESS50319.2020.9160281

Anderson, P. M., & Fouad, A. A. (2003). Power System Control and Stability (2nd ed.). IEEE Press.

Adiyabazar, C., Gonzalez-Longatt, F., Acosta, M. N., Rueda, J. L., & Palensky, P. (2020). Optimal UFLS settings: An assessment of frequency system response indicators. IEEE PES Innovative Smart Grid Technologies Conference Europe, 2020-Octob, 1141–1145. https://doi.org/10.1109/ISGT-Europe47291.2020.9248760

Ajala, O., Lu, M., Dhople, S., Johnson, B. B., & Dominguez-Garcia, A. (2021). Model Reduction for Inverters with Current Limiting and Dispatchable Virtual Oscillator Control. IEEE Transactions on Energy Conversion, 8969(c), 1–9. https://doi.org/10.1109/TEC.2021.3083488

Deepak, D., Raisz, D., Musa, A., Ponci, F., & Monti, A. (2019). Inertial control applied to synchronverters to achieve linear swing dynamics. 2019 Electric Power Quality and Supply Reliability Conference and 2019 Symposium on Electrical Engineering and Mechatronics, PQ and SEEM 2019, 727481, 0–5. https://doi.org/10.1109/PQ.2019.8818273

Energía, C. R. de. (2016). Código de Red. Diario Oficial de La Federación.

Gonzalez-Longatt, F., Sanchez, F., & Leelaruji, R. (2019). Unveiling the Character of the Frequency in Power Systems. 2019 IEEE PES GTD Grand International Conference and Exposition Asia, GTD Asia 2019, 57–62. https://doi.org/10.1109/GTDAsia.2019.8715972

Habibullah, M., Gonzalez-Longatt, F., Acosta Montalvo, M. N., Chamorro, H. R., Rueda, J. L., & Palensky, P. (2021). On short circuit of grid-forming converters controllers: A glance of the dynamic behaviour. 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2021. https://doi.org/10.1109/ISGTLatinAmerica52371.2021.9543017

Kundur, P. S. (2017). Power system dynamics and stability. In Power System Stability and Control, Third Edition. https://doi.org/10.4324/b12113

Lu, M., Dutta, S., Purba, V., Dhople, S., & Johnson, B. (2019). A grid-compatible virtual oscillator controller: Analysis and design. 2019 IEEE Energy Conversion Congress and Exposition, ECCE 2019, 2643–2649. https://doi.org/10.1109/ECCE.2019.8913128

Lu, M., Mallik, R., Johnson, B., & Dhople, S. (2021). Dispatchable Virtual-oscillator-controlled Inverters with Current-limiting and MPPT Capabilities. 2021 IEEE Energy Conversion Congress and Exposition, ECCE 2021 - Proceedings, 3316–3323. https://doi.org/10.1109/ECCE47101.2021.9595530

Acosta, M. N., Gonzalez-Longatt, F., Denysiuk, S., & Strelkova, H. (2020). Optimal Settings of Fast Active Power Controller: Nordic Case. 2020 IEEE 7th International Conference on Energy Smart Systems, ESS 2020 - Proceedings, 63–67. https://doi.org/10.1109/ESS50319.2020.9160281

Anderson, P. M., & Fouad, A. A. (2003). Power System Control and Stability (2nd ed.). IEEE Press.

Adiyabazar, C., Gonzalez-Longatt, F., Acosta, M. N., Rueda, J. L., & Palensky, P. (2020). Optimal UFLS settings: An assessment of frequency system response indicators. IEEE PES Innovative Smart Grid Technologies Conference Europe, 2020-Octob, 1141–1145. https://doi.org/10.1109/ISGT-Europe47291.2020.9248760

Ajala, O., Lu, M., Dhople, S., Johnson, B. B., & Dominguez-Garcia, A. (2021). Model Reduction for Inverters with Current Limiting and Dispatchable Virtual Oscillator Control. IEEE Transactions on Energy Conversion, 8969(c), 1–9. https://doi.org/10.1109/TEC.2021.3083488

Deepak, D., Raisz, D., Musa, A., Ponci, F., & Monti, A. (2019). Inertial control applied to synchronverters to achieve linear swing dynamics. 2019 Electric Power Quality and Supply Reliability Conference and 2019 Symposium on Electrical Engineering and Mechatronics, PQ and SEEM 2019, 727481, 0–5. https://doi.org/10.1109/PQ.2019.8818273

Dhople, S. V., Johnson, B. B., & Hamadeh, A. O. (2013). Virtual Oscillator Control for voltage source inverters. 2013 51st Annual Allerton Conference on Communication, Control, and Computing, Allerton 2013, 1359–1363. https://doi.org/10.1109/Allerton.2013.6736685

Energía, C. R. de. (2016). Código de Red. Diario Oficial de La Federación.

Gonzalez-Longatt, F., Sanchez, F., & Leelaruji, R. (2019). Unveiling the Character of the Frequency in Power Systems. 2019 IEEE PES GTD Grand International Conference and Exposition Asia, GTD Asia 2019, 57–62. https://doi.org/10.1109/GTDAsia.2019.8715972

Habibullah, M., Gonzalez-Longatt, F., Acosta Montalvo, M. N., Chamorro, H. R., Rueda, J. L., & Palensky, P. (2021). On short circuit of grid-forming converters controllers: A glance of the dynamic behaviour. 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2021. https://doi.org/10.1109/ISGTLatinAmerica52371.2021.9543017

Kundur, P. S. (2017). Power system dynamics and stability. In Power System Stability and Control, Third Edition. https://doi.org/10.4324/b12113

Lu, M., Dutta, S., Purba, V., Dhople, S., & Johnson, B. (2019). A grid-compatible virtual oscillator controller: Analysis and design. 2019 IEEE Energy Conversion Congress and Exposition, ECCE 2019, 2643–2649. https://doi.org/10.1109/ECCE.2019.8913128

Lu, M., Mallik, R., Johnson, B., & Dhople, S. (2021). Dispatchable Virtual-oscillator-controlled Inverters with Current-limiting and MPPT Capabilities. 2021 IEEE Energy Conversion Congress and Exposition, ECCE 2021 - Proceedings, 3316–3323. https://doi.org/10.1109/ECCE47101.2021.9595530

Machinery Committee of the IEEE Power, E. (2019). IEEE Std 1110-2019: IEEE Guide for Synchronous Generator Modeling Practices and Parameter Verification with Applications in Power System Stability Anlyses (Vol. 2019). IEEE Standards Association.

Mattsson, S. E., & Elmqvist, H. (1997). Modelica - An International Effort to Design the Next Generation Modeling Language. IFAC Proceedings Volumes, 30(4), 151–155. https://doi.org/10.1016/s1474-6670(17)43628-7

Musca, R., Gonzalez-Longatt, F., & Sánchez, C. A. G. (2022). Power System Oscillations with Different Prevalence of Grid-Following and Grid-Forming Converters. Energies, 15(12), 1–19. https://doi.org/10.3390/en15124273

OPAL-RT Technologies. (2023). ePHASORSIM Documentation. https://opal-rt.atlassian.net/wiki/spaces/PEUD/pages/144505576/Native+Library

Ortega, Á., & Milano, F. (2019). Combined Frequency and RoCoF Control of Converter-Interfaced Energy Storage Systems. IFAC-PapersOnLine, 52(4), 240–245. https://doi.org/10.1016/j.ifacol.2019.08.198

PowerWorld Corporation. (n.d.). PowerWorld Block Diagrams. https://www.powerworld.com/files/Block-Diagrams-18.pdf

Rahmann, C., & Castillo, A. (2014). Fast frequency response capability of photovoltaic power plants: The necessity of new grid requirements and definitions. Energies, 7(10), 6306–6322. https://doi.org/10.3390/en7106306

Rosso, R., Wang, X., Liserre, M., Lu, X., & Engelken, S. (2021). Grid-Forming Converters: Control Approaches, Grid-Synchronization, and Future Trends—A Review. IEEE Open Journal of Industry Applications, 2(May), 93–109. https://doi.org/10.1109/ojia.2021.3074028

Sanchez Gorostiza, F. Gonzalez-Longatt, F., & Rueda, J. L. (2020). Multi-objetctive optimal provision of fast frequency response from EV clusters. IET Generation, Transmission & Distribution, 14(23), 5580-5587. https://doi.org/10.1049/iet-gtd.2020.0717

SERC. (2008). PRC-006-SERC-02. 1–13.

Zhong, Q. C., & Weiss, G. (2011). Synchronverters: Inverters That Mimic Synchronous Generators. IEEE Transactions on Industrial Electronics, 58(4), 1259–1267. https://doi.org/10.1109/TIE.2010.2048839

Zhong, Q. C. (2016). Virtual Synchronous Machines: A unified interface for grid integration. IEEE Power Electronics Magazine, 3(4), 18–27. https://doi.org/10.1109/MPEL.2016.2614906