Mejoramiento de las Propiedades Mecánicas del Concreto Estructural Utilizando Microporoso Etileno Acetato de Vinilo

##plugins.themes.bootstrap3.article.main##

Josef Alexander Chaname Bustamante

Juan Martín García Chumacero

Guillermo Gustavo Arriola Carrasco


Palabras clave:
Cement, concrete, unit weight, compressive strength, workability Cemento, concreto, peso unitario, resistencia a la compresión

Resumen

A través del paso de los años, en todo el mundo se ha tratado de incrementar el reciclaje de materiales, sobre todo los de origen artificial, esto con la finalidad de producir compuestos que se sean sostenibles. Dentro de estos materiales destaca el concreto como un elemento versátil, al que se le puede añadir diferentes agentes externos; sin embargo, muchos de ellos al no ser compatibles con los agregados, el cemento o el agua, pueden provocar algunas alteraciones en su desempeño mecánico. Por lo expuesto, la presente investigación abordó el estudio de un material artificial llamado Microporoso Etileno Acetato de Vinilo (MEVA), con el fin de evaluar su influencia en las propiedades mecánicas del concreto estructural. Se utilizaron adiciones de MEVA en rangos de 5.00 %, 10.00 %, 15.00 % y 20.00 % respecto al volumen del concreto, para analizar su comportamiento en la mezcla, tanto en las propiedades físicas y mecánicas. Los resultados muestran que la trabajabilidad y peso unitario se ven afectadas ante el aumento de MEVA. A pesar de ello, el desempeño mecánico mostró significativos incrementos en la resistencia a la compresión en 8.81 %, tracción en 22.86 %, flexión en 24.51 % y módulo de elasticidad en 2.12 %, con la adición al 5.00 % de MEVA a los 28 días. No obstante, a mayores dosis existe una reducción de dichas resistencias. Por lo expuesto, se concluye en que la incorporación de MEVA en 5.00 % mejora en gran media las propiedades mecánicas del concreto para uso estructural, en relación a la resistencia teórica de diseño de 21.00 MPa.


 

Descargas

Descargas

Los datos de descargas todavía no están disponibles.




Detalles del artículo

Biografías de los autores/as

Josef Alexander Chaname Bustamante, Universidad Señor de Sipán, Facultad de Ingeniería, Arquitectura y Urbanismo, Pimentel, Perú

Civil Engineer from Universidad Señor de Sipán. Engineer dedicated to the area of construction and supervision of infrastructure works. Experience in the technical office area in construction and consulting companies, in the quality department, testing control.

Juan Martín García Chumacero, Universidad Señor de Sipán, Facultad de Ingeniería, Arquitectura y Urbanismo, Pimentel, Perú

Civil Engineer from Lord of Sipan University, studying a Master's Degree in Geology at the San Marcos National University, Lima-Peru. Engineer dedicated to the area of research as a consultant and researcher in different branches of civil engineering such as concrete technology, roads and soil and slope stability, seismic analysis of structures among other areas, experience in writing research reports, scientific and review articles, contribution as a reviewer of a scientific article of the Journal Faculty of Engineering-University of Antioquia. Experience in supervision of educational infrastructure works and real estate projects at national level.

Guillermo Gustavo Arriola Carrasco, Universidad Nacional de Jaén, Departamento Académico de Ingeniería Civil, Jaén, Perú

Civil Engineer from Lord of Sipan University, Peru and with studies completed for a Master's degree in Road Engineering at the Ricardo Palma University, Peru. He´s a designer and consultant in civil engineering projects with an emphasis on hydrology and hydraulic engineering. He has experience in the calculation and design of works of art for roads, bridges, hydraulic works, hydrological and hydraulic modeling. Researcher and thesis advisor in hydraulic engineering, hydrology and related branches for undergraduates.

Citas

Ahmad, I., Khan, K. A., Ahmad, T., Alam, M., & Bashir, M. T. (2022). Influence of accelerated curing on the compressive strength of polymer-modified concrete. Frontiers of Structural and Civil Engineering, 16(5), 589-599. https://doi.org/10.1007/s11709-022-0789-1

ASTM C39 (2021). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, PA, USA, 4(2). https://doi.org/10.1520/C0039_C0039M-21

ASTM C78 (2022). Standard Test Method for Flexural trength of Concrete (Using Simple Beam with Third-Point Loading). ASTM International, West Conshohocken, PA, USA, 4(2). https://doi.org/10.1520/C0078_C0078M-22

ASTM C136 (2020). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International, West Conshohocken, PA, USA, 4(2). https://doi.org/10.1520/C0136_C0136M-19

ASTM C138 (2017). Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete. ASTM International, West Conshohocken, PA, USA, 4(2). https://doi.org/10.1520/C0138_C0138M-17A

ASTM C143 (2020). Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International, West Conshohocken, PA, USA, 4(2). https://doi.org/10.1520/C0143_C0143M-20

ASTM C150 (2022). Standard Specification for Portland Cement. ASTM International, West Conshohocken, PA, USA, 4(1). https://doi.org/10.1520/C0150_C0150M-22

ASTM C469 (2022). Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression. ASTM International, West Conshohocken, PA, USA, 4(2). https://doi.org/10.1520/C0469_C0469M-22

ASTM C496 (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, PA, USA, 4(2). https://doi.org/10.1520/C0496_C0496M-17

Azadmanesh, H., Hashemi, S., & Ghasemi, S. (2021). The effect of styrene-butadiene rubber and ethylene vinyl acetate polymers on the mechanical properties of engineered cementitious composites. Composites Communications, 24. https://doi.org/10.1016/j.coco.2021.100656

Baptista, M., Da Luz Garcia, M., Pinho, S., Lopes, M., Almeida, M., Coelho, C., & Fonseca, C. (2021). Valorization of EVA waste from footwear industry as natural aggregates substitutes in mortar: The effect of granulometry. Journal of Material Cycles and Waste Management, 23(4), 1445-1455. https://doi.org/10.1007/s10163-021-01222-7

Carneiro, F., Moreira, K., Sampaio, A., & Espinosa, R. (2020). Incorporation of vinyl ethylene acetate residue into the production of interlocking concrete blocks for paving. Revista Materia, 25(4), 1-11. https://doi.org/10.1590/S1517-707620200004.1155

Chicoma, A., Quiroz, R., Muñoz, S., & Villena, L. (2023). Influence of the physical and mechanical properties of concrete by adding rubber powder and silica fume. Journal of Sustainable Architecture and Civil Engineering, 32(1), 205-223. https://doi.org/10.5755/j01.sace.32.1.31964

De Brito, J., & Kurda, R. (2020). Special issue low binder concrete and mortars. Applied Sciences (Switzerland), 10(11). https://doi.org/10.3390/app10113866

Dulsang, N., Kasemsiri, P., Posi, P., Hiziroglu, S., & Chindaprasirt, P. (2016). Characterization of an environment friendly lightweight concrete containing ethyl vinyl acetate waste. Materials and Design, 96, 350-356. https://doi.org/10.1016/j.matdes.2016.02.037

Farhoud, A., Mansour, M., Shoukry, R., El Bagoury, O., El Akkad, S., Farag, M., Hamza, A., El Nahas, E., Hussam, A., & Aboud-Zeid, M. (2019). Use of EVA foam in Portland cement concrete. 7th International Materials Specialty Conference 2018, Held as Part of the Canadian Society for Civil Engineering Annual Conference 2018, 415-426. Retrieved from SCOPUS

Ghally, E., Khalil, H., Ragab, A., & Bakr, M. (2022). Evaluation the chemical and mechanical properties of EVA modified concrete. Egyptian Journal of Chemistry, 65(4), 403-410. https://doi.org/10.21608/ejchem.2022.117998.5320

Gregorova, V., Ledererova, M., & Stefunkova, Z. (2017). Investigation of influence of recycled plastics from cable, ethylene vinyl acetate and polystyrene waste on lightweight concrete properties. Procedia Engineering, 195, 127-133. https://doi.org/10.1016/j.proeng.2017.04.534

Gregorová, V., Štefunková, Z., & Ledererová, M. (2020). Experimental study of the recycled plastic aggregate lightweight composites based on different kinds of binder. Key Engineering Materials, 868 KEM, 32-38. https://doi.org/10.4028/www.scientific.net/KEM.868.32

Ioana, A., Paunescu, L., Constantin, N., Rucai, V., Dobrescu, C., Pasare, V., & Istrate, A. (2023). High-strength and heat-insulating cellular building concrete based on calcined gypsum. Materials, 16(1). https://doi.org/10.3390/ma16010118

Ismail, M., Noruzman, A., Bhutta, M., Yusuf, T., & Ogiri, I. (2016). Effect of vinyl acetate effluent in reducing heat of hydration of concrete. KSCE Journal of Civil Engineering, 20(1), 145-151. https://doi.org/10.1007/s12205-015-0045-5

Khan, K., Ahmad, I., & Alam, M. (2019). Effect of ethylene vinyl acetate (EVA) on the setting time of cement at different temperatures as well as on the mechanical strength of concrete. Arabian Journal for Science and Engineering, 44(5), 4075-4084. https://doi.org/10.1007/s13369-018-3249-4

Kulesza, M., Debski, D., Fangrat, J., & Michalak, J. (2020). Effect of redispersible polymer powders on selected mechanical properties of thin-bed cementitious mortars. Cement, Wapno, Beton, 2020(3), 168-177. https://doi.org/10.32047/CWB.2020.25.3.1

Lee, J., Shafigh, P., & Bahri, S. (2019). Comparative study of mechanical properties for substitution of normal weight coarse aggregate with oil-palm-boiler clinker and lightweight expanded clay aggregate concretes. Journal of Design and Built Environment, 19(3), 62-77. https://doi.org/10.22452/jdbe.vol19no3.7

Liu, S., Yang, S., Kong, Y., Wan, T., & Zhao, G. (2019). Anti-cracking property of EVA-modified polypropylene fiber-reinforced concrete under thermal-cooling cycling curing. Journal Wuhan University of Technology, Materials Science Edition, 34(5), 1109-1118. https://doi.org/10.1007/s11595-019-2167-y

Machado, R., Pereira, L., Zanelato, E., Manhães, A., Azevedo, A., Marvila, M., Alexandre, J., Monteiro, S., & Petrucci, L. (2019). Incorporation of EVA residue for production of lightweight concrete. Minerals, Metals and Materials Series, 673-681. https://doi.org/10.1007/978-3-030-05749-7_67

Marques, M., Antunes, M., Mancini, S., & Oliveira, P. (2019). Interpretation of X-Ray images to investigate the viability of incorporating poly (Ethylene-Co-Vinyl Acetate) (EVA) waste in Portland cement. Materials Science Forum, 958 MSF, 105-110. https://doi.org/10.4028/www.scientific.net/MSF.958.105

Moreira, R., de Souza, T., Pessôa, J., Da Silva, E., & Amado, F. (2020). Study of the use of crushed sand in cementitious composites with EVA and piassava fibers. Construction and Building Materials, 262. https://doi.org/10.1016/j.conbuildmat.2020.120908

Muñoz, S., Garcia, J. M., Charca, S., & Villena, L. (2023). Influence of the secondary aluminum chip on the physical and mechanical properties of concrete. Innovative Infrastructure Solutions, 8(1). https://doi.org/10.1007/s41062-022-01015-3

Ngassam, I., Schmidt, W., Beushausen, H., & Kühne, H. (2018). Intrinsic modification of repair mortars made with EVA and CaO, impacts at early ages. MATEC Web of Conferences, 199. https://doi.org/10.1051/matecconf/201819907004

Pacheco, F., Krumenauer, M., Silva, L., Tutikian, F., & Oliveira, M. (2017). Ethylene vinyl acetate (EVA) aggregates usage evaluation for lightweight concrete subfloor to reduce impact sound in flooring systems. Revista Ingenieria de Construccion, 32(3), 149-156. https://doi.org/10.4067/s0718-50732017000300149

Parra, C., Sánchez, E., Miñano, I., Benito, F., & Hidalgo, P. (2019). Recycled plastic and cork waste for structural lightweight concrete production. Sustainability (Switzerland), 11(7). https://doi.org/10.3390/su11071876

Selvakumar, M., Geetha, S., & Muthu, L. (2022). Investigation on properties of aerated concrete with foundry sand as replacement for fine aggregate. Materials Today: Proceedings, 65, 1666-1673. https://doi.org/10.1016/j.matpr.2022.04.709

Serelis, E., & Vaitkevicius, V. (2022). Utilization of glass shards from municipal solid waste in aluminium-based ultra-lightweight concrete. Construction and Building Materials, 350. https://doi.org/10.1016/j.conbuildmat.2022.128396

Shang, H., Hou, G., Sun, C., Lu, D., Zhao, X., & Fan, L. (2023). EVA enhanced cementitious materials based coatings for the improvement of steel reinforcement corrosion protection performance. Journal of Building Engineering, 75. https://doi.org/10.1016/j.jobe.2023.107080

Sldozian, R., Hamad, A., & Al-Rawe, H. (2023). Mechanical properties of lightweight green concrete including nano calcium carbonate. Journal of Building Pathology and Rehabilitation, 8(1). https://doi.org/10.1007/s41024-022-00247-1

Swarnkar, P., & Srivastava, A. (2021). Durability of styrene-butadiene latex modified cement concrete. International Research Journal of Engineering and Technology (IRJET), 8(1), 1340-1342. Retrieved from Google Scholar

Xiong, G., Wang, C., Zhou, S., Jia, X., Luo, W., Liu, J., & Peng, X. (2019). Preparation of high strength lightweight aggregate concrete with the vibration mixing process. Construction and Building Materials, 229. https://doi.org/10.1016/j.conbuildmat.2019.116936

Zhang, Y., Du, W., Li, Y., & Yu, J. (2018). Preparation of EVA emulsion self-healing capsules for concrete and evaluation of healing properties. Materials Science Forum, 944 MSF, 736-744. https://doi.org/10.4028/www.scientific.net/MSF.944.736