Reemplazo del Agregado Fino por Residuo de Ladrillo Refractario en Concreto Expuesto a Elevadas Temperaturas
##plugins.themes.bootstrap3.article.main##
Resumen
Los desechos de ladrillos refractarios, sumado a los incendios que se originan en las estructuras, hacen posible juntar dos problemáticas para contribuir a una construcción sustentable para introducir nuevas alternativas de áridos en el concreto. El objetivo del estudio fue producir concreto con menos agregado fino y evaluar un concreto más sostenible, utilizando residuos de ladrillos refractarios (RLR) para reemplazar el agregado fino en cinco porcentajes 10 %, 20 %, 30 %, 40 % y 50 % para ser expuestos a fuego directo. El diseño se basó en una relación agua-cemento a/c de 0.71 y en la elaboración de 144 probetas de hormigón a base de RLR. Las muestras frescas se sometieron a ensayos de asentamiento y peso unitario fresco, las probetas cilíndricas preparadas tras 28 días de curado se sometieron a resistencia a compresión a temperatura ambiente y diversas temperaturas (200 hasta 1 000 °C) durante diferentes tiempos de 15, 30 y 60 minutos. Además, se realizó un análisis estadístico de varianza de Tres Factores con respecto a la resistencia a compresión a los 28 días. Los resultados mostraron que el RLR influye en que la mezcla de hormigón sea menos trabajable y reduzca el peso unitario fresco a mayores porcentajes de sustitución. Por otro lado, la dosificación ideal fue con el porcentaje de 40RLR a diferencia de las otras dosis sometidas a calor, siendo insignificante la exposición de 15 minutos, pero si relevantes a 30 y 60 minutos. Se concluye que el RLR influye significativamente en la mejora de sus propiedades mecánicas sometidas al calor elevado y la cantidad de residuos se limita a una dosis específica, lo cual proporciona un enfoque constructivo sostenible frente a exposiciones de fuego directo controlado.
Descargas
Descargas
Detalles del artículo
Citas
Abbu, M., Al-Attar, A. A., Alrahman, S. A., and Al-Gburi, M. (2022). The mechanical properties of lightweight (volcanic pumice) concrete containing fibers with exposure to high temperatures. Journal of the Mechanical Behavior of Materials, 32(1), 20220249. https://doi.org/10.1515/jmbm-2022-0249
Aboutaleb, D., Safi, B., Crahour, K., and Belald, A. (2017). Use of refractory bricks as sand replacement in self-compacting mortar. Cogent Engineering, 4(1), 1-8. https://doi.org/10.1080/23311916.2017.1360235
Ahn, Y., Jang, J., and Lee, H. (2016). Mechanical properties of lightweight concrete made with coal ashes after exposure to elevated temperatures. Cement and Concrete Composites, 72, 27-38. https://doi.org/10.1016/j.cemconcomp.2016.05.028
Akbar, A., Garivani, S., Shahmar, A., and Heshmati, M. (2020). Structural investigation of the collapse of the 16-story Plasco building due to fire. Structural Design of Tall and Special Buildings, 30(1), 1-20. https://doi.org/10.1002/tal.1815
American Concrete Institute 211.1. (1993). Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete. In A. C. 211.1, Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete. United States: American Concrete Institute.
Arioz, O. (2007). Effects of elevated temperatures on properties of concrete. Fire Safety Journal, 42(8), 516-522. https://doi.org/10.1016/j.firesaf.2007.01.003
ASTM C136. (2001). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. West Conshohocken: ASTM Internacional.
ASTM C138/C138M. (2014). Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete. West Conshohocken, PA: ASTM International.
ASTM C143/C143M. (2012). Standard Test Method for Slump of Hydraulic-Cement Concrete. West Conshohocken, PA: ASTM International.
ASTM C150. (2012). Cement, Standard Specification for Portland. In A. C150, Standard Specification for Portland Cement. West Conshohocken: ASTM International.
ASTM C192M. (2015). Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. West Conshohocken: ASTM International.
ASTM C39M. (2014). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. West Conshohocken, PA: ASTM International.
Baradaran, A., and Nematzadeh, M. (2017). The effect of elevated temperatures on the mechanical properties of concrete with fine recycled refractory brick aggregate and aluminate cement. Construction and Building Materials, 147, 865-875. https://doi.org/10.1016/j.conbuildmat.2017.04.138
Bareiro, W., Silva, F., and Dominguez, E. (2020). Thermo-mechanical behavior of stainless steel fiber reinforced refractory. Construction and Building Materials, 240, 1-16. https://doi.org/10.1016/j.conbuildmat.2019.117881
Bo, W., Jie, G., Lu, Z., and Luzhe, W. (2020). Experimental study on fire resistance of full-scale earthquake damaged reinforced concrete columns. Journal of Building Structures, 41(11), 1-15. https://doi.org/10.14006 / j.jzjgxb.2019.0473
Calmeiro, D. S., and Correia, R. J. (2014). Residual mechanical properties of calcareous and granite aggregate concretes after fire. Magazine of Concrete Research, 66(16), 1400005. https://doi.org/10.1680/macr.14.00005
Carrizo, L., Villagrán, Y., Píttori, A., and Zega, C. (2020). Incidencia de polvo calizo, puzolana natural y escoria en hormigones expuestos a altas temperaturas. Ingenio Tecnológico, 2, 1-12. Retrieved from https://ingenio.frlp.utn.edu.ar/index.php/ingenio/article/view/22
Cruz, R., Zapata, L., Quintero, L., and Herrera, J. (2015). Physical and mechanical characterization of concrete exposed to elevated temperatures by using ultrasonic pulse velocity. Revista Facultad de Ingeniería Universidad de Antioquia, (75), 118-129. https://doi.org/10.17533/udea.redin.n75a12
Da Silva, F., Silva, M., and Munaiar, J. (2020). Simulação termomecânica de prismas com blocos de concreto em situação de incêndio. Revista Materia, 25(1), e-12561. https://doi.org/10.1590/s1517-707620200001.0886
Feijoo, B. A., Tobón, J. I., and Restrepo-Baena, O. J. (2021). Substitution of aggregates by waste foundry sand: effects on physical properties of mortars. Materiales De Construcción, 71(343), e251. https://doi.org/10.3989/mc.2021.10320
Flores, V., Jiménez, V., and Pérez, A. (2018). Influencia de la incorporación de vidrio triturado en las propiedades y el comportamiento a alta temperatura de morteros de cemento. Boletin de la Sociedad Española de Cerámica y Vidrio, 57(6), 257-265. https://doi.org/10.1016/j.bsecv.2018.03.001
Galvez, J., Barzola, C., Gomez, R., and Torre, A. (2020). Estudio de las diatomitas de Ica como materia prima en la fabricación de áridos artificiales de arcilla para su uso como agregados ligeros en mezclas de hormigón diseñados en base a las exigencias de la NTP y ASTM. Investigación & Desarrollo, 20(1), 113-134. https://doi.org/10.23881/idupbo.020.1-9i
Hachemi, S., Khattab, M., and Benzetta, H. (2023). Enhancing the performance of concrete after exposure to high temperature by coarse and fine waste fire brick: An experimental study. Construction and Building Materials, 368, 130356. https://doi.org/10.1016/j.conbuildmat.2023.130356
Han, L., Zhou, K., Tan, Q., and Song, T. (2020). Performance of steel reinforced concrete columns after exposure to fire:. Engineering Structures, 211, 1-12. https://doi.org/10.1016/j.engstruct.2020.110421
Humaish, A., Essa, A., and Edan, A. (2020). Fire resistance of selected construction. AIP Conference Proceedings, 2213(1), 1-10. https://doi.org/10.1063/5.0000053
Khattab, M., and Hachemi, S. (2021). Performance of recycled aggregate concrete made with waste refractory brick. International Journal of Engineering Research in Africa, 57, 99 - 113. https://doi.org/10.4028/www.scientific.net/JERA.57.99
Liu, Y., Jin, B., Huo, J., and Li, Z. (2018). Effect of microstructure evolution on mechanical behaviour of concrete after high temperatures. Magazine of Concrete Research, 70(15), 770-784. https://doi.org/10.1680/jmacr.17.00197
Ma, Q., Lin, Z., Guo, R., Yan, F., He, K., Zhao, Z., . . . Bai, Y. (2018). Performance of modified lightweight aggregate concrete after exposure to high temperatures. Magazine of Concrete Research, 70(24), 1243-1255. https://doi.org/10.1680/jmacr.18.00033
Memon, S., Shah, S., Khushnood, R., and Baloch, W. (2019). Durability of sustainable concrete subjected to elevated temperature – A review. Construction and Building Materials, 199, 435-455. https://doi.org/10.1016/j.conbuildmat.2018.12.040
Molay, T., Lery, M., Fidele, T., Franck, H., and Bienvenu, N. (2019). Mechanical and physical performances of concretes made from crushed sands of different geological nature subjected to high temperatures. Engineering Science and Technology, an International Journal, 22, 1116-1124. https://doi.org/10.1016/j.jestch.2019.02.007
Moreno, L., Ospina, M., and Rodríguez, K. (2019). Resistencia de concreto con agregado de bloque de arcilla triturado como reemplazo de agregado grueso. Ingeniare, 27(4), 635-642. https://doi.org/10.4067/S0718-33052019000400635
Sangi-Gonçalves, H., Penteado-Dias, D., and Castillo-Lara, R. (2022). Replacement of hydrated lime by lime mud-residue from the cellulose industry in multiple-use mortars production. Materiales De Construcción, 72(347), e292. https://doi.org/10.3989/mc.2022.17721
Sarhat, S. R., and Sherwood, E. G. (2013). Residual mechanical response of recycled aggregate concrete after exposure to elevated temperatures. Journal of Materials in Civil Engineering, 25(11), 1721 - 1730. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000719
Sevim, O., Alakara, E. H., and Guzelkucuk , S. (2023). Fresh and Hardened Properties of Cementitious Composites Incorporating Firebrick Powder from Construction and Demolition Waste. Buildings, 13(1), 45. https://doi.org/10.3390/buildings13010045
Shirani, K., Reisi, M., and Savadkoohi , M. S. (2021). Eco-friendly High-Strength Refractory Concrete Containing Calcium Alumina Cement by Reusing Granite Waste as Aggregate. International Journal of Concrete Structures and Materials, 15(48). https://doi.org/10.1186/s40069-021-00483-8
Shui-Jun, Y., Peng-Fei, Z., Xiao-Fang, Y., Hong, Z., and Xiao-Li, C. (2013). Refractory performance study on foamed concrete and concrete. 3rd International Conference on Civil Engineering, Architecture and Building Materials, CEABM 2013. Jiaozuo: Applied Mechanics and Materials. https://doi.org/10.4028/www.scientific.net/AMM.357-360.1034
Sobia, A., Azmi, I., Hamidah, M., and Rafeeqi, S. (2015). Elevated temperature resistance of ultra-high-performance fibre-reinforced cementitious composites. Magazine of Concrete Research, 67(17), 923-937. https://doi.org/10.1680/macr.14.00134
Tufail, M., Shahzada, K., Gencturk, B., and Wei, J. (2017). Effect of Elevated Temperature on Mechanical Properties of Limestone, Quartzite and Granite Concrete. International Journal of Concrete Structures and Materials, 11(1), 17-28. https://doi.org/10.1007/s40069-016-0175-2
Uysal, H., Demirboga, R., Sahin, R., and Gul, R. (2004). The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete. Cement and Concrete Research, 34(5), 845-848. https://doi.org/10.1016/j.cemconres.2003.09.018
Varona, F., Baeza, F., and Iborra, S. (2018). Estudio de las propiedades mecánicas residuales de hormigones expuestos a altas temperaturas. Hormigón y Acero, 69(286), 235-241. https://doi.org/10.1016/j.hya.2017.04.004
Zeghad, M., Mitterpach, J., Safi, B., Amrane, and Saidi, M. (2017). Reuse of Refractory Brick Wastes (RBW) as a Supplementary Cementitious Material in a Concrete. Periodica Polytechnica Civil Engineering, 61(1), 75-80. https://doi.org/10.3311 / ppci.8194