Una Revisión de Ladrillos de Suelo y Cemento con Refuerzos Diversos

##plugins.themes.bootstrap3.article.main##

Adán Jiménez-Montoya

Juan Benito Pascual-Francisco

Gabriela Sánchez-Ruiz

María Guadalupe Ríos-Ledezma

Jael Kaleb Novelo-Ramos

Ana Laura Matías-Molina


Palabras clave:
Adobes, ladrillos, concreto, refuerzos, plásticos, fibras Adobe, concrete, bricks, reinforcement, plastics, fibers

Resumen

The objective of this work is to carry out a comparative analysis of researches related to the determination of physical-mechanical properties of construction units (adobe and bricks) made of soil, soil-cement, and concrete with various reinforcements, to provide an overview of procedures that could lead to the improvement of the performance of these construction units. The percentage variation of compressive, tensile, flexural strength, thermal insulation, density, and water absorption according to the type of reinforcement and base mortar is analyzed. The incorporation of cement as reinforcement seems to have the greatest effect on improving the compressive strength, plastics on thermal insulation, density, and water absorption, and vegetables on tensile strength.

Descargas

Descargas

Los datos de descargas todavía no están disponibles.




Detalles del artículo

Citas

Abad-Flores, J. (2020). Aplicación de poliestireno expandido para mejorar la resistencia mecánica del adobe en el sitio Arqueológico de Pachacamac -Lima -2020 [Tesis de Pregrado]. Universidad César Vallejo.

ABNT. (2008). ABNT. NBR 8800. Proyecto de estructuras de acero y de estructuras mixtas de acero y concreto de edificios.

Ahmad, A., Pekrioglu-Balkis, A., & Kurtis-Onochie, K. (2022). The use of shredded plastic wastes in Alker production and its effect on compressive strength and shrinkage properties. Alexandria Engineering Journal, 61(2), 1563–1570. https://doi.org/10.1016/j.aej.2021.06.062

Araya-Letelier, G., Concha-Riedel, J., Antico, F., & Sandoval, C. (2019a). Experimental mechanical-damage assessment of earthen mixes reinforced with micro polypropylene fibers. Construction and Building Materials, 198, 762–776. https://doi.org/10.1016/j.conbuildmat.2018.11.261

Araya-Letelier, G., Duy, E., Reidel, Ú., Kunze, S., Burbano, C., & Saavedra, E. (2019b). Bloques de adobe reforzados tranversalmente con plástico de botellas recicladas. Recuperación de Estructuras: Primeras Jornadas Internacionales de Estudiantes Investigadores, 168–180. Recuperado de: https://www.researchgate.net/publication/337227755_BLOQUES_DE_ADOBE_REFORZADOS_TRANSVERSALMENTE_CON_PLASTICO_DE_BOTELLAS_RECICLADAS

Araya-Letelier, G., Gonzalez-Calderon, H., Kunze, S., Burbano-Garcia, C., Reidel, U., Sandoval, C., & Bas, F. (2020). Waste-based natural fiber reinforcement of adobe mixtures: Physical, mechanical, damage and durability performance assessment. Journal of Cleaner Production, 273, 122806. https://doi.org/10.1016/j.jclepro.2020.122806

Ascencios-Mostacero, S. (2020). Propiedades de un adobe estructural con adición de cascarilla de arroz y plástico reciclado molido aplicado a viviendas climatizadas en Alto Perú, Ancash-2019 [Tesis de Pregrado]. Universidad César Vallejo.

Associacao Brasileira de Normas Técnicas. (1984). NBR 8492: 1984. Tijolo de Solo-cimento-Resistência e Absorção.

ASTM International. (2009). ASTM D5102-09: Standard test method for unconfined compressive strength of cohesive soil.

ASTM International. (2015a). ASTM C127-15: Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate.

ASTM International. (2015b). ASTM C349-15: Standard test method for compressive strength of hydraulic-cement mortars (using portions of prisms broken in flexure).

ASTM International. (2015c). ASTM D695-15: Standard test method for compressive properties of rigid plastics.

ASTM International. (2016). ASTM C109/C109M-16a: Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens).

ASTM International. (2017a). ASTM D1633-17: Standard Test Methods for Compressive Strength of Molded Soil-Cement Cylinders.

ASTM International. (2017b). ASTM D6913-17: Standard test methods for particle-size distribution (gradation) of soils using sieve analysis.

ASTM International. (2017c). ASTM D7928-17: Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis.

Aznarán-Monzón, G. (2018). Influencia del plástico reciclado en las propiedades físicas y mecánicas del adobe en el distrito de Santa – Ancash - 2018 [Tesis de Pregrado]. Universidad César Vallejo.

Bailón-Espinoza, J., & Huatuco-Cordova, E. (2021). Uso de plástico PET como agregado en la fabricación de unidades de albañilería ecológica para la construcción de muros de cerramiento en el sector Cooperativa Santa Isabel, distrito de Huancayo, al 2021 [Tesis de Pregrado]. Universidad Continental.

Balan, K., Roja, S., & Thasneem, A. (2021). Soil Stabilization with Rubber Latex and Human Hair Fibre– An Overview Paper. Journal of Advances in Geotechnical Engineering, 4(1), 1–5. https://doi.org/10.5281/ZENODO.4693807

Barriola, J., & Ginoccio, F. (1983). Experiencias con los Métodos de Campo de Clasificación de Suelos para la Construcción de Adobe. PUCP.

Barturen-Payano, G. (2020). Incorporación de fibras de plástico PET reciclado para mejorar el adobe tradicional en el Pueblo Joven El Nazareno-Chiclayo-2020 [Tesis de Pregrado]. Universidad César Vallejo.

Bertelsen, I., Belmonte, L., Fischer, G., & Ottosen, L. (2021). Influence of synthetic waste fibres on drying shrinkage cracking and mechanical properties of adobe materials. Construction and Building Materials, 286. https://doi.org/10.1016/j.conbuildmat.2021.122738

Binici, H., Aksogan, O., Bodur, M., Akca, E., & Kapur, S. (2007). Thermal isolation and mechanical properties of fibre reinforced mud bricks as wall materials. Construction and Building Materials, 21(4), 901–906. https://doi.org/10.1016/j.conbuildmat.2005.11.004

Binici, H., Aksogan, O., & Shah, T. (2005). Investigation of fibre reinforced mud brick as a building material. Construction and Building Materials, 19(4), 313–318. https://doi.org/10.1016/j.conbuildmat.2004.07.013

Binshad, A., Kavya, P., Sonij, P., Sreelal, C., & Shajeena, K. (2018). Study on stabilized earthen block reinforced with straw fibers. International Research Journal of Engineering and Technology (IRJET), 5(5), 1–4. Recuperado de: https://www.irjet.net/archives/V5/i5/IRJET-5I5399.pdf

Brito-del Pino, J., Santamaría-Herrera, N., Macas-Peñarand, C., & Tasán-Cruz, D. (2021). Elaboración de adobe sostenible. DAYA. Diseño, Arte y Arquitectura, 11, 59–79. https://doi.org/10.33324/daya.vi11.459

Burbano-Garcia, C., Araya-Letelier, G., Astroza, R., & Silva, Y. (2022). Adobe mixtures reinforced with fibrillated polypropylene fibers: Physical/mechanical/fracture/durability performance and its limits due to fiber clustering. Construction and Building Materials, 343, 128102. https://doi.org/10.1016/j.conbuildmat.2022.128102

Bureau of Indian Standards. (1980). IS 2710: Methods of test for soil-cement blocks.

Bureau of Indian Standards. (1982). IS 1725 (1982): Soil based blocks used in general building construction.

Bureau of Indian Standards. (1986). IS 2720-13: Methods of test for soils, Part 13: Direct shear test.

Bureau of Indian Standards. (1992). IS 3495. Methods of tests of burnt clay building bricks.

Calatan, G., Hegyi, A., Dico, C., & Mircea, C. (2016). Determining the Optimum Addition of Vegetable Materials in Adobe Bricks. Procedia Technology, 22, 259–265. https://doi.org/10.1016/j.protcy.2016.01.077

Campos-Barboza, K., Gomez-Montalban, F., Montero-Nuñez, M., Pantoja-Guillen, F., & Pasco-Soto, J. (2019). Diseño del Proceso de Producción de Ladrillos Basados en Plástico Reciclado [Tesis de Pregrado]. Universidad de Piura

Candenas-Tacac, J., Huancachoque-Leon, R., & Juanpedro-Cisneros, W. (2018). Uso de fibras de polietileno tereftalato para el refuerzo del adobe tradicional [Tesis de Pregrado]. Universidad San Ignacio de Loyola.

Ccansaya-Saldaña, K., & Piña-Pereyra, D. (2021). Diseño Sismorresistente de Vivienda de Albañilería Confinada Utilizando Bloques de Concreto con Polímeros Plásticos, Villa El Salvador – 2021 [Tesis de Pregrado]. Universidad César Vallejo.

Cerna-Livia, M., & Velásquez, C. (2021). Estudios de propiedades mecánicas del adobe con adición de viruta de madera y tereftalato de polietileno en Aquia – Ancash 2021. [Tesis de Pregrado]. Universidad César Vallejo.

Chib, N., & Sharma, T. (2021). Experimental Investigation on Mechanical Properties of Compressed Soil Blocks Manufactured Using Waste Materials. IOP Conference Series: Earth and Environmental Science, 889(1). https://doi.org/10.1088/1755-1315/889/1/012012

Consoli, N., Montardo, J., Prietto, P., & Pasa, G. (2002). Engineering Behavior of a Sand Reinforced with Plastic Waste. Journal of Geotechnical and Geoenvironmental Engineering, 128(6), 462–472. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(462)

Cordell, L. (1996). Ancient Pueblo Peoples (Exploring the ancient world). Smithsonian.

Correa-Carlos, A., & Puican-Cumpa, P. (2021). Caracterización física y mecánica del adobe incorporando fibras de cabuya y polímero reciclado PET en la ciudad de Ferreñafe, Lambayeque [Tesis de Pregrado]. Universidad César Vallejo.

Cuitiño-Rosales, M., Rotondaro, R., & Esteves, A. (2020). Comparative analysis of thermal aspects and mechanical resistance of building materials and elements with earth. Revista de Arquitectura (Bogotá), 22(1), 138–151. https://doi.org/10.14718/revarq.2020.2348

Deboucha, S., & Hashim, R. (2011). A review on bricks and stabilized compressed earth blocks. Scientific Research and Essays, 6(3), 499–506. https://doi.org/10.5897/SRE09.356

Di Marco-Morales, R., & León-Téllez, H. (2017). Ladrillos con adición de PET- una solución amigable para núcleos rurales del municipio del Socorro. 5to Simposio Internacional de Investigación En Ciencias Económicas 5to Simposio Internacional de Investigación En Ciencias Económicas, Administrativas y Contables - Sociedad y Desarrollo, Administrativas y Contables, 1–42. https://doi.org/10.18041/2027-1212/centauro.11.2016.2448

Donkor, P., & Obonyo, E. (2015). Earthen construction materials: Assessing the feasibility of improving strength and deformability of compressed earth blocks using polypropylene fibers. Materials & Design, 83, 813–819. https://doi.org/10.1016/j.matdes.2015.06.017

Donkor, P., Obonyo, E., & Ferraro, C. (2021). Fiber Reinforced Compressed Earth Blocks: Evaluating Flexural Strength Characteristics Using Short Flexural Beams. Materials, 14(22), 6906. https://doi.org/10.3390/ma14226906

Dueñas, B., Soto, W., & Carrera, E. (2021). Evaluation of the Thermic Efficiency of the Prototype at Scale of a Sustainable Housing that Uses Concrete with PET Fibers (CFP) and the Trombe System. IOP Conference Series: Materials Science and Engineering, 1054(1). https://doi.org/10.1088/1757-899X/1054/1/012006

El-Emam, M., & Al-Tamimi, A. (2022). Strength and Deformation Characteristics of Dune Sand Earth Blocks Reinforced with Natural and Polymeric Fibers. Sustainability, 14(8). https://doi.org/10.3390/su14084850

European Committee for Standardization. (2003). UNE-EN 771-1:2003: Specification for masonry units - Part 1: Clay masonry units. European Committee for Standardization.

European Committee for Standardization. (2011). EN 772-1:2011: Methods of test for masonry units - Part 1: Determination of compressive strength. European Committee for Standardization.

European Committee for Standardization. (2016). EN 1052-2:2016: Geotextiles and geotextile-related products - Determination of the tensile properties - Part 2: Wide-width tensile test. European Committee for Standardization.

European Committee for Standardization. (2019). EN 1015-11:2019. Test methods for mortars for masonry Part 11: Determination of flexural and compressive strength of hardener mortar. European Committee for Standardization.

Farias-Solano, M. (2019). Influencia del porcentaje de polietileno tereftalato en las propiedades físicas y mecánicas del bloque de concreto - 2018 [Tesis de Pregrado]. Universidad César Vallejo.

Galán-Marín, C., Rivera-Gómez, C., & Bradley, F. (2013). Ultrasonic, Molecular and Mechanical Testing Diagnostics in Natural Fibre Reinforced, Polymer-Stabilized Earth Blocks. International Journal of Polymer Science, 2013, 1–10. https://doi.org/10.1155/2013/130582

Gama-Castro, J., Cruz, T., Pi-Puig, T., Alcalá-Martínez, R., Cabadas-Báez, H., Jasso-Castañeda, C., Díaz-Ortega, J., Sánchez-Pérez, S., López-Aguilar, F., & Vilanova, R. (2012). Arquitectura de tierra: el adobe como material de construcción en la época prehispánica. Boletín de La Sociedad Geológica Mexicana, 64(2), 177–188. http://dx.doi.org/10.18268/BSGM2012v64n2a3

Gandia, R., Gomes, F., Corrêa, A., Rodrigues, M., & Mendes, R. (2019). Physical, mechanical and thermal behavior of adobe stabilized with glass fiber reinforced polymer waste. Construction and Building Materials, 222, 168–182. https://doi.org/10.1016/j.conbuildmat.2019.06.107

Goli, V., Mohammad, A., & Singh, D. (2020). Application of Municipal Plastic Waste as a Manmade Neo-construction Material: Issues & Wayforward. Resources, Conservation and Recycling, 161. https://doi.org/10.1016/j.resconrec.2020.105008

Gordillo-Monteza, C. (2020). Evaluación de la resistencia a compresión de ladrillos ecológicos con aplicación de tereftalato de polietileno, Moyobamba, 2020 [Tesis de Pregrado]. Universidad César Vallejo.

Goutsaya, J., Ntamack, G., Kenmeugne, B., & Charif-d’Ouazzane, S. (2021). Mechanical characteristics of compressed earth blocks, compressed stabilized earth blocks and stabilized adobe bricks with cement in the town of Ngaoundere - Cameroon. Journal of Building Materials and Structures, 8(2), 139–159. https://doi.org/10.34118/jbms.v8i2.1441

Guio-Pérez, M. (2019). Comportamiento mecánico de bloques comprimidos de suelo cemento al 6% con fibras sintéticas de PET [Tesis de Pregrado]. Universidad Militar Nueva Granada.

Gutiérrez-Villalobos, J., Moreno-Martínez, J., Catalán-Quiroz, P., & Galván-Chávez, A. (2021). Characterization of adobe bricks used in developing countries: Mexico as a case of study. Journal of Architecture and Design, 5(13), 1–12. https://doi.org/10.35429/JAD.2021.13.5.1.12

Hejazi, S., Sheikhzadeh, M., Abtahi, S., & Zadhoush, A. (2012). A simple review of soil reinforcement by using natural and synthetic fibers. Construction and Building Materials, 30, 100–116. https://doi.org/10.1016/j.conbuildmat.2011.11.045

Illampas, R., Ioannou, I., & Charmpis, D. (2014). Adobe bricks under compression: Experimental investigation and derivation of stress–strain equation. Construction and Building Materials, 53, 83–90. https://doi.org/10.1016/j.conbuildmat.2013.11.103

Inga-Castro, A. (2019). Diseño de un adobe con poliestireno expandido reciclado para una vivienda climatizada en la zona rural de Piruruyoc, Huaraz - Ancash, 2019 [Tesis de Pregrado]. Universidad César Vallejo.

Instituto Colombiano de Normas Técnicas y Certificación. (1998). NTC 3495: Bloques y ladrillos de concreto. Instituto Colombiano de Normas Técnicas y Certificación.

Instituto Colombiano de Normas Técnicas y Certificación. (2000. NTC 4205. Ingeniería Civil y Arquitectura. Unidades de Mampostería de Arcilla Cocida. Ladrillos y Bloques Cerámicos. Instituto Colombiano de Normas Técnicas y Certificación

Instituto Nacional de Calidad. (2003). NTP 330.613: Agua. Evaluación de la calidad.

Instituto Nacional de Defensa Civil. (2005). NTP 339.034: Resistencia a la compresión. Instituto Nacional de Defensa Civil.

Instituto Nacional de Normalización. (2008). NCh 851:2008: Muros de contención de tierra armada. Instituto Nacional de Normalización.

Islam, M., Islam, K., Shahjalal, M., Khatun, E., Islam, S., & Razzaque, A. (2022). Influence of different types of fibers on the mechanical properties of recycled waste aggregate concrete. Construction and Building Materials, 337, 127577. https://doi.org/10.1016/j.conbuildmat.2022.127577

Jannat, N., Hussien, A., Abdullah, B., & Cotgrave, A. (2020). Application of agro and non-agro waste materials for unfired earth blocks construction: A review. Construction and Building Materials, 254, 119346. https://doi.org/10.1016/j.conbuildmat.2020.119346

Jayaram, M., Kastro-Kiran, V., & Karthik, T. (2021). Characteristics of Bricks with Virgin Plastic and Bottom Ash. IOP Conference Series: Materials Science and Engineering, 1057, 012080. https://doi.org/10.1088/1757-899X/1057/1/012080

Kasinikota, P., & Tripura, D. (2021). Evaluation of compressed stabilized earth block properties using crushed brick waste. Construction and Building Materials, 280. https://doi.org/10.1016/j.conbuildmat.2021.122520

Khalid, F., Saaidin, S., Shahidan, S., Othman, N., & Guntor, N. (2020). Strength of Concrete Containing Synthetic Wire Waste as Fiber Materials. IOP Conference Series: Materials Science and Engineering, 713(1). https://doi.org/10.1088/1757-899X/713/1/012003

Kumar, R., Kumar, M., Kumar, I., & Srivastava, D. (2021). A review on utilization of plastic waste materials in bricks manufacturing process. Materials Today: Proceedings, 46, 6775–6780. https://doi.org/10.1016/j.matpr.2021.04.337

Lozano-Rios, F., & Valle-Fernández, H. (2020). Diseño de un bloque de adobe, utilizando fibras de botellas plásticas, para reducir el costo y mejorar la resistencia a la compresión, Lamas 2020 [Tesis de Pregrado]. Universidad César Vallejo.

Lucas, A., & Harris, J. (2011). Ancient Egyptian Materials and Industries (4th ed.). Dover Publications.

Márquez-Domínguez, S., Mejía-Sánchez, E., & Renzano A. (2018). Soft Pre-stressed PET profiles as reinforcing fibers in structural elements made of concrete. DYNA, 85(206), 162–170. https://doi.org/10.15446/dyna.v85n206.71805

Menon, J., & Ravikumar, M. (2019). Evaluation of Laterite Soil Stabilized using Polymer Sack Fibers. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(6), 682–685. Recuperado de: https://www.ijitee.org/portfolio-item/e2948038519/

Meza-de Luna, A., Gurbir, K., Preciado-Martínez, H., & Gutiérrez-López, I. (2021). Desempeño a Flexión del Concreto Reforzado con Fibras Plásticas Recicladas. Conciencia Tecnológica, 61. Recuperado de: https://www.redalyc.org/comocitar.oa?id=94467989001

Ming, Y., Chen, P., Li, L., Gan, G., & Pan, G. (2021). A Comprehensive Review on the Utilization of Recycled Waste Fibers in Cement-Based Composites. Materials, 14(13), 3643. https://doi.org/10.3390/ma14133643

Ministerio de Vivienda, Construcción y Saneamiento. (2017). Norma Técnica E.080. Diseño y Construcción con Tierra Reforzada.

Ministerio de Vivienda, Construcción y Saneamiento. (2014). Norma Técnica E.070: Albañilería.

Mir, B., & Shah, R. (2019). How Stiffness of Reinforcement Affects the Type of Major Reinforcement Force Developed at Various Orientations in Reinforced Sand? (pp. 137–151). https://doi.org/10.1007/978-3-030-01944-0_11

Muntohar, A., Widianti, A., Hartono, E., & Diana, W. (2013). Engineering Properties of Silty Soil Stabilized with Lime and Rice Husk Ash and Reinforced with Waste Plastic Fiber. Journal of Materials in Civil Engineering, 25(9), 1260–1270. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000659

Nasrollahzadeh, K., & Zare, M. (2020). Experimental investigation on axially loaded adobe masonry columns confined by polymeric straps. Construction and Building Materials, 262. https://doi.org/10.1016/j.conbuildmat.2020.119895

Noa-Huaman, M., & Ordoñez-Claros, D. (2022). Adición de Fibras PET en el adobe para aumentar la capacidad resistente a la compresión, reducir: la densidad, el porcentaje de absorción de agua y la conductividad térmica en las viviendas de la zona rural de Ayacucho-Perú [Tesis de Pregrado]. Universidad Peruana de Ciencias Aplicadas.

Núñez-Aldás, G., López-Arboleda, A., Chérrez-Gavilanes, D., & Guevara-Robalino, J. (2021). Adición de botellas plásticas pet en la elaboración de bloques de adobe para viviendas unifamiliares y su efecto en la variación de temperatura y acondicionamiento acústico en el cantón Ambato, provincia de Tungurahua. Ciencia Digital, 5(1), 197–218. https://doi.org/10.33262/cienciadigital.v5i1.1536

Oliveira-Metzker, S., Freire-Sabino, T., Farinassi-Mendes, J., Cornélio-Ribeiro, A., & Farinassi-Mendes, R. (2022). Soil-Cement bricks development using polymeric waste. Environmental Science and Pollution Research Volume, 29, 21034–21048. https://doi.org/10.21203/rs.3.rs-451591/v1

Onochie, K., & Balkis, A. (2021). Polypropylene fiber reinforced Alker as a structurally stable and sustainable building material. Journal of Cleaner Production, 279. https://doi.org/10.1016/j.jclepro.2020.123600

Paschoalin-Filho, J., João, H., & Guerner-Dias, A. (2016). Evaluation of compressive strength and water absorption of soilcement bricks manufactured with addition of pet (polyethylene terephthalate) wastes. Acta Scientiarum, 38(2), 163–171. https://doi.org/10.4025/actascitechnol.v38i2.28458

Paucar-Sevillano, C. (2018). Diseño de un adobe con adición de poliestireno para la construcción de viviendas climatizadas en la zona rural del distrito de Caraz, Ancash - 2018 [Tesis de Pregrado]. Universidad César Vallejo.

Paul, S., Islam, M., & Elahi, T. (2022). Comparative effectiveness of fibers in enhancing engineering properties of Earth as a building Material: A review. Construction and Building Materials, 332. https://doi.org/10.1016/j.conbuildmat.2022.127366

Peña-Estrella, E., & Niño-Santos, J. (2019). Análisis del comportamiento de muros en adobe reforzados con fleje plástico en polipropileno y tiras plásticas reciclables de botellas de PET [Tesis de pregrado]. Universidad Militar Nueva Granada.

Pérez-Collantes, D. (2021). Influencia del plástico PET en las propiedades de ladrillos de concreto ecológicos para viviendas unifamiliares, Carabayllo – 2021 [Tesis de pregrado]. Universidad César Vallejo.

Pérez-Pérez, L. & Zamora-Fernández, H. (2020). Diseño de bloques de concreto modificados con fibras de plástico reciclado para la reducción de cargas en edificaciones, Tarapoto, 2020 [Tesis de pregrado]. Universidad César Vallejo.

Piñeros-Moreno, M., & Herrera-Muriel, R. (2018). Proyecto de factibilidad económica para la fabricación de bloques con agregados de plástico reciclado (PET), aplicados en la construcción de vivienda [Tesis de Pregrado]. Universidad Católica de Colombia.

Quispe-Crises, N. (2017). Evaluación del esfuerzo admisible del adobe estabilizado con fibras de pet triturado en la zona de mollepata provincia de Huamanga, Departamento de Ayacucho – 2016 [Tesis de pregrado]. Universidad Nacional De San Cristóbal De Huamanga.

Rabello, L., & da Conceição-Ribeiro, R. (2021). A novel vermiculite/ vegetable polyurethane resin-composite for thermal insulation eco-brick production. Composites Part B: Engineering, 221. https://doi.org/10.1016/j.compositesb.2021.109035

Radwan, M., Lee, F., Woon, Y., Yew, M., Mo, K., & Wai, S. (2021). A Study of the Strength Performance of Peat Soil: A Modified Cement-Based Stabilization Agent Using Fly Ash and Polypropylene Fiber. Polymers, 13(23), 4059. https://doi.org/10.3390/polym13234059

Ramakrishnan, S., Loganayagan, S., Kowshika, G., Ramprakash, C., & Aruneshwaran, M. (2021). Adobe blocks reinforced with natural fibres: A review. Materials Today: Proceedings, 45, 6493–6499. https://doi.org/10.1016/j.matpr.2020.11.377

Robalino-Sánchez, E. (2019). La adición de botellas plásticas PET en la elaboración de bloques de adobe para viviendas unifamiliares y su efecto en la variación de temperatura y acondicionamiento acústico en el cantón Ambato provincia de Tungurahua [Tesis de Pregrado]. Universidad Técnica de Ambato.

Ruiz, G., Zhang, X., Edris, W., Cañas, I., & Garijo, L. (2018). A comprehensive study of mechanical properties of compressed earth blocks. Construction and Building Materials, 176, 566–572. https://doi.org/10.1016/j.conbuildmat.2018.05.077

Safiuddin, M., Jumaat, Z., Salam, M., Islam, M., & Hashim, R. (2010). Utilization of solid wastes in construction materials. International Journal of the Physical Sciences, 5, 1952–1963. Recuperado de: https://academicjournals.org/journal/IJPS/article-full-text-pdf/1B5823B32355

Salaou, N., Thuo, J., Kabubo, C., & Gariy, Z. (2021). Performance of Polypropylene Fibre Reinforced Laterite Masonry Bricks. Civil Engineering and Architecture, 9(7), 2178–2186. https://doi.org/10.13189/cea.2021.090707

Salazar-Saucedo, J., & Tejada-Escobedo, Y. (2021). Análisis comparativo de la resistencia a la compresión de adobe estabilizado bajo los criterios de la Norma E080, Trujillo 2021 [Tesis de Pregrado]. Universidad Privada del Norte.

Salih, M., Osofero, A., & Imbabi, M. (2020a). Constitutive models for fibre reinforced soil bricks. Construction and Building Materials, 240. https://doi.org/10.1016/j.conbuildmat.2019.117806

Salih, M., Osofero, A., & Imbabi, M. (2020b). Critical review of recent development in fiber reinforced adobe bricks for sustainable construction. Frontiers of Structural and Civil Engineering, 14(4), 839–854. https://doi.org/10.1007/s11709-020-0630-7

Sandoval-Saucedo, J., & Guzmán-Hasegawa, R. (2019). Propuesta de elaboración y diseño de bloques de concreto simple y pet reciclado para muros de mampostería en la ciudad de Piura [Tesis de Pregrado]. Universidad César Vallejo.

Serrano, S., Barreneche, C., & Cabeza, L. (2016). Use of by-products as additives in adobe bricks: Mechanical properties characterisation. Construction and Building Materials, 108, 105–111. https://doi.org/10.1016/j.conbuildmat.2016.01.044

Sharma, S., Sudhakara, P., Misra, S., & Singh, J. (2021). Critical review on the Solid-wastes issue: Generation, Composition, Disposal and their recycling potential for various applications. Journal of Physics: Conference Series, 1804(1). https://doi.org/10.1088/1742-6596/1804/1/012147

Solís, M., Torrealva, D., Santillán, P., & Montoya, G. (2015). Análisis del comportamiento a flexión de muros de adobe reforzados con geomallas. Informes de La Construcción, 67(539), e092. https://doi.org/10.3989/ic.13.141

Abad-Flores, J. (2020). Aplicación de poliestireno expandido para mejorar la resistencia mecánica del adobe en el sitio Arqueológico de Pachacamac -Lima -2020 [Tesis de Pregrado]. Universidad César Vallejo.

ABNT. (2008). ABNT. NBR 8800. Proyecto de estructuras de acero y de estructuras mixtas de acero y concreto de edificios.

Ahmad, A., Pekrioglu-Balkis, A., & Kurtis-Onochie, K. (2022). The use of shredded plastic wastes in Alker production and its effect on compressive strength and shrinkage properties. Alexandria Engineering Journal, 61(2), 1563–1570. https://doi.org/10.1016/j.aej.2021.06.062

Araya-Letelier, G., Concha-Riedel, J., Antico, F., & Sandoval, C. (2019a). Experimental mechanical-damage assessment of earthen mixes reinforced with micro polypropylene fibers. Construction and Building Materials, 198, 762–776. https://doi.org/10.1016/j.conbuildmat.2018.11.261

Araya-Letelier, G., Duy, E., Reidel, Ú., Kunze, S., Burbano, C., & Saavedra, E. (2019b). Bloques de adobe reforzados tranversalmente con plástico de botellas recicladas. Recuperación de Estructuras: Primeras Jornadas Internacionales de Estudiantes Investigadores, 168–180. Recuperado de: https://www.researchgate.net/publication/337227755_BLOQUES_DE_ADOBE_REFORZADOS_TRANSVERSALMENTE_CON_PLASTICO_DE_BOTELLAS_RECICLADAS

Araya-Letelier, G., Gonzalez-Calderon, H., Kunze, S., Burbano-Garcia, C., Reidel, U., Sandoval, C., & Bas, F. (2020). Waste-based natural fiber reinforcement of adobe mixtures: Physical, mechanical, damage and durability performance assessment. Journal of Cleaner Production, 273, 122806. https://doi.org/10.1016/j.jclepro.2020.122806

Ascencios-Mostacero, S. (2020). Propiedades de un adobe estructural con adición de cascarilla de arroz y plástico reciclado molido aplicado a viviendas climatizadas en Alto Perú, Ancash-2019 [Tesis de Pregrado]. Universidad César Vallejo.

Associação Brasileira de Normas Técnicas. (1984). NBR 8492: 1984. Tijolo de Solo-cimento-Resistência e Absorção.

ASTM International. (2009). ASTM D5102-09: Standard test method for unconfined compressive strength of cohesive soil.

ASTM International. (2015a). ASTM C127-15: Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate.

ASTM International. (2015b). ASTM C349-15: Standard test method for compressive strength of hydraulic-cement mortars (using portions of prisms broken in flexure).

ASTM International. (2015c). ASTM D695-15: Standard test method for compressive properties of rigid plastics.

ASTM International. (2016). ASTM C109/C109M-16a: Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens).

ASTM International. (2017a). ASTM D1633-17: Standard Test Methods for Compressive Strength of Molded Soil-Cement Cylinders.

ASTM International. (2017b). ASTM D6913-17: Standard test methods for particle-size distribution (gradation) of soils using sieve analysis.

ASTM International. (2017c). ASTM D7928-17: Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis.

Aznarán-Monzón, G. (2018). Influencia del plástico reciclado en las propiedades físicas y mecánicas del adobe en el distrito de Santa – Ancash - 2018 [Tesis de Pregrado]. Universidad César Vallejo.

Bailón-Espinoza, J., & Huatuco-Cordova, E. (2021). Uso de plástico PET como agregado en la fabricación de unidades de albañilería ecológica para la construcción de muros de cerramiento en el sector Cooperativa Santa Isabel, distrito de Huancayo, al 2021 [Tesis de Pregrado]. Universidad Continental.

Balan, K., Roja, S., & Thasneem, A. (2021). Soil Stabilization with Rubber Latex and Human Hair Fibre– An Overview Paper. Journal of Advances in Geotechnical Engineering, 4(1), 1–5. https://doi.org/10.5281/ZENODO.4693807

Barriola, J., & Ginoccio, F. (1983). Experiencias con los Métodos de Campo de Clasificación de Suelos para la Construcción de Adobe. PUCP.

Barturen-Payano, G. (2020). Incorporación de fibras de plástico PET reciclado para mejorar el adobe tradicional en el Pueblo Joven El Nazareno-Chiclayo-2020 [Tesis de Pregrado]. Universidad César Vallejo.

Bertelsen, I., Belmonte, L., Fischer, G., & Ottosen, L. (2021). Influence of synthetic waste fibres on drying shrinkage cracking and mechanical properties of adobe materials. Construction and Building Materials, 286. https://doi.org/10.1016/j.conbuildmat.2021.122738

Binici, H., Aksogan, O., Bodur, M., Akca, E., & Kapur, S. (2007). Thermal isolation and mechanical properties of fibre reinforced mud bricks as wall materials. Construction and Building Materials, 21(4), 901–906. https://doi.org/10.1016/j.conbuildmat.2005.11.004

Binici, H., Aksogan, O., & Shah, T. (2005). Investigation of fibre reinforced mud brick as a building material. Construction and Building Materials, 19(4), 313–318. https://doi.org/10.1016/j.conbuildmat.2004.07.013

Binshad, A., Kavya, P., Sonij, P., Sreelal, C., & Shajeena, K. (2018). Study on stabilized earthen block reinforced with straw fibers. International Research Journal of Engineering and Technology (IRJET), 5(5), 1–4. Recuperado de: https://www.irjet.net/archives/V5/i5/IRJET-5I5399.pdf

Brito-del Pino, J., Santamaría-Herrera, N., Macas-Peñarand, C., & Tasán-Cruz, D. (2021). Elaboración de adobe sostenible. DAYA. Diseño, Arte y Arquitectura, 11, 59–79. https://doi.org/10.33324/daya.vi11.459

Burbano-Garcia, C., Araya-Letelier, G., Astroza, R., & Silva, Y. (2022). Adobe mixtures reinforced with fibrillated polypropylene fibers: Physical/mechanical/fracture/durability performance and its limits due to fiber clustering. Construction and Building Materials, 343, 128102. https://doi.org/10.1016/j.conbuildmat.2022.128102

Bureau of Indian Standards. (1980). IS 2710: Methods of test for soil-cement blocks.

Bureau of Indian Standards. (1982). IS 1725 (1982): Soil based blocks used in general building construction.

Bureau of Indian Standards. (1986). IS 2720-13: Methods of test for soils, Part 13: Direct shear test.

Bureau of Indian Standards. (1992). IS 3495. Methods of tests of burnt clay building bricks.

Calatan, G., Hegyi, A., Dico, C., & Mircea, C. (2016). Determining the Optimum Addition of Vegetable Materials in Adobe Bricks. Procedia Technology, 22, 259–265. https://doi.org/10.1016/j.protcy.2016.01.077

Campos-Barboza, K., Gomez-Montalban, F., Montero-Nuñez, M., Pantoja-Guillen, F., & Pasco-Soto, J. (2019). Diseño del Proceso de Producción de Ladrillos Basados en Plástico Reciclado [Tesis de Pregrado]. Universidad de Piura

Candenas-Tacac, J., Huancachoque-Leon, R., & Juanpedro-Cisneros, W. (2018). Uso de fibras de polietileno tereftalato para el refuerzo del adobe tradicional [Tesis de Pregrado]. Universidad San Ignacio de Loyola.

Ccansaya-Saldaña, K., & Piña-Pereyra, D. (2021). Diseño Sismorresistente de Vivienda de Albañilería Confinada Utilizando Bloques de Concreto con Polímeros Plásticos, Villa El Salvador – 2021 [Tesis de Pregrado]. Universidad César Vallejo.

Cerna-Livia, M., & Velásquez, C. (2021). Estudios de propiedades mecánicas del adobe con adición de viruta de madera y tereftalato de polietileno en Aquia – Ancash 2021. [Tesis de Pregrado]. Universidad César Vallejo.

Chib, N., & Sharma, T. (2021). Experimental Investigation on Mechanical Properties of Compressed Soil Blocks Manufactured Using Waste Materials. IOP Conference Series: Earth and Environmental Science, 889(1). https://doi.org/10.1088/1755-1315/889/1/012012

Consoli, N., Montardo, J., Prietto, P., & Pasa, G. (2002). Engineering Behavior of a Sand Reinforced with Plastic Waste. Journal of Geotechnical and Geoenvironmental Engineering, 128(6), 462–472. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(462)

Cordell, L. (1996). Ancient Pueblo Peoples (Exploring the ancient world). Smithsonian.

Correa-Carlos, A., & Puican-Cumpa, P. (2021). Caracterización física y mecánica del adobe incorporando fibras de cabuya y polímero reciclado PET en la ciudad de Ferreñafe, Lambayeque [Tesis de Pregrado]. Universidad César Vallejo.

Cuitiño-Rosales, M., Rotondaro, R., & Esteves, A. (2020). Comparative analysis of thermal aspects and mechanical resistance of building materials and elements with earth. Revista de Arquitectura (Bogotá), 22(1), 138–151. https://doi.org/10.14718/revarq.2020.2348

Deboucha, S., & Hashim, R. (2011). A review on bricks and stabilized compressed earth blocks. Scientific Research and Essays, 6(3), 499–506. https://doi.org/10.5897/SRE09.356

Di Marco-Morales, R., & León-Téllez, H. (2017). Ladrillos con adición de PET- una solución amigable para núcleos rurales del municipio del Socorro. 5to Simposio Internacional de Investigación En Ciencias Económicas 5to Simposio Internacional de Investigación En Ciencias Económicas, Administrativas y Contables - Sociedad y Desarrollo, Administrativas y Contables, 1–42. https://doi.org/10.18041/2027-1212/centauro.11.2016.2448

Donkor, P., & Obonyo, E. (2015). Earthen construction materials: Assessing the feasibility of improving strength and deformability of compressed earth blocks using polypropylene fibers. Materials & Design, 83, 813–819. https://doi.org/10.1016/j.matdes.2015.06.017

Donkor, P., Obonyo, E., & Ferraro, C. (2021). Fiber Reinforced Compressed Earth Blocks: Evaluating Flexural Strength Characteristics Using Short Flexural Beams. Materials, 14(22), 6906. https://doi.org/10.3390/ma14226906

Dueñas, B., Soto, W., & Carrera, E. (2021). Evaluation of the Thermic Efficiency of the Prototype at Scale of a Sustainable Housing that Uses Concrete with PET Fibers (CFP) and the Trombe System. IOP Conference Series: Materials Science and Engineering, 1054(1). https://doi.org/10.1088/1757-899X/1054/1/012006

El-Emam, M., & Al-Tamimi, A. (2022). Strength and Deformation Characteristics of Dune Sand Earth Blocks Reinforced with Natural and Polymeric Fibers. Sustainability, 14(8). https://doi.org/10.3390/su14084850

European Committee for Standardization. (2003). UNE-EN 771-1:2003: Specification for masonry units - Part 1: Clay masonry units. European Committee for Standardization.

European Committee for Standardization. (2011). EN 772-1:2011: Methods of test for masonry units - Part 1: Determination of compressive strength. European Committee for Standardization.

European Committee for Standardization. (2016). EN 1052-2:2016: Geotextiles and geotextile-related products - Determination of the tensile properties - Part 2: Wide-width tensile test. European Committee for Standardization.

European Committee for Standardization. (2019). EN 1015-11:2019. Test methods for mortars for masonry Part 11: Determination of flexural and compressive strength of hardener mortar. European Committee for Standardization.

Farias-Solano, M. (2019). Influencia del porcentaje de polietileno tereftalato en las propiedades físicas y mecánicas del bloque de concreto - 2018 [Tesis de Pregrado]. Universidad César Vallejo.

Galán-Marín, C., Rivera-Gómez, C., & Bradley, F. (2013). Ultrasonic, Molecular and Mechanical Testing Diagnostics in Natural Fibre Reinforced, Polymer-Stabilized Earth Blocks. International Journal of Polymer Science, 2013, 1–10. https://doi.org/10.1155/2013/130582

Gama-Castro, J., Cruz, T., Pi-Puig, T., Alcalá-Martínez, R., Cabadas-Báez, H., Jasso-Castañeda, C., Díaz-Ortega, J., Sánchez-Pérez, S., López-Aguilar, F., & Vilanova, R. (2012). Arquitectura de tierra: el adobe como material de construcción en la época prehispánica. Boletín de La Sociedad Geológica Mexicana, 64(2), 177–188. http://dx.doi.org/10.18268/BSGM2012v64n2a3

Gandia, R., Gomes, F., Corrêa, A., Rodrigues, M., & Mendes, R. (2019). Physical, mechanical and thermal behavior of adobe stabilized with glass fiber reinforced polymer waste. Construction and Building Materials, 222, 168–182. https://doi.org/10.1016/j.conbuildmat.2019.06.107

Goli, V., Mohammad, A., & Singh, D. (2020). Application of Municipal Plastic Waste as a Manmade Neo-construction Material: Issues & Wayforward. Resources, Conservation and Recycling, 161. https://doi.org/10.1016/j.resconrec.2020.105008

Gordillo-Monteza, C. (2020). Evaluación de la resistencia a compresión de ladrillos ecológicos con aplicación de tereftalato de polietileno, Moyobamba, 2020 [Tesis de Pregrado]. Universidad César Vallejo.

Goutsaya, J., Ntamack, G., Kenmeugne, B., & Charif-d’Ouazzane, S. (2021). Mechanical characteristics of compressed earth blocks, compressed stabilized earth blocks and stabilized adobe bricks with cement in the town of Ngaoundere - Cameroon. Journal of Building Materials and Structures, 8(2), 139–159. https://doi.org/10.34118/jbms.v8i2.1441

Guio-Pérez, M. (2019). Comportamiento mecánico de bloques comprimidos de suelo cemento al 6% con fibras sintéticas de PET [Tesis de Pregrado]. Universidad Militar Nueva Granada.

Gutiérrez-Villalobos, J., Moreno-Martínez, J., Catalán-Quiroz, P., & Galván-Chávez, A. (2021). Characterization of adobe bricks used in developing countries: Mexico as a case of study. Journal of Architecture and Design, 5(13), 1–12. https://doi.org/10.35429/JAD.2021.13.5.1.12

Hejazi, S., Sheikhzadeh, M., Abtahi, S., & Zadhoush, A. (2012). A simple review of soil reinforcement by using natural and synthetic fibers. Construction and Building Materials, 30, 100–116. https://doi.org/10.1016/j.conbuildmat.2011.11.045

Illampas, R., Ioannou, I., & Charmpis, D. (2014). Adobe bricks under compression: Experimental investigation and derivation of stress–strain equation. Construction and Building Materials, 53, 83–90. https://doi.org/10.1016/j.conbuildmat.2013.11.103

Inga-Castro, A. (2019). Diseño de un adobe con poliestireno expandido reciclado para una vivienda climatizada en la zona rural de Piruruyoc, Huaraz - Ancash, 2019 [Tesis de Pregrado]. Universidad César Vallejo.

Instituto Colombiano de Normas Técnicas y Certificación. (1998). NTC 3495: Bloques y ladrillos de concreto. Instituto Colombiano de Normas Técnicas y Certificación.

Instituto Colombiano de Normas Técnicas y Certificación. (2000. NTC 4205. Ingeniería Civil y Arquitectura. Unidades de Mampostería de Arcilla Cocida. Ladrillos y Bloques Cerámicos. Instituto Colombiano de Normas Técnicas y Certificación

Instituto Nacional de Calidad. (2003). NTP 330.613: Agua. Evaluación de la calidad.

Instituto Nacional de Defensa Civil. (2005). NTP 339.034: Resistencia a la compresión. Instituto Nacional de Defensa Civil.

Instituto Nacional de Normalización. (2008). NCh 851:2008: Muros de contención de tierra armada. Instituto Nacional de Normalización.

Islam, M., Islam, K., Shahjalal, M., Khatun, E., Islam, S., & Razzaque, A. (2022). Influence of different types of fibers on the mechanical properties of recycled waste aggregate concrete. Construction and Building Materials, 337, 127577. https://doi.org/10.1016/j.conbuildmat.2022.127577

Jannat, N., Hussien, A., Abdullah, B., & Cotgrave, A. (2020). Application of agro and non-agro waste materials for unfired earth blocks construction: A review. Construction and Building Materials, 254, 119346. https://doi.org/10.1016/j.conbuildmat.2020.119346

Jayaram, M., Kastro-Kiran, V., & Karthik, T. (2021). Characteristics of Bricks with Virgin Plastic and Bottom Ash. IOP Conference Series: Materials Science and Engineering, 1057, 012080. https://doi.org/10.1088/1757-899X/1057/1/012080

Kasinikota, P., & Tripura, D. (2021). Evaluation of compressed stabilized earth block properties using crushed brick waste. Construction and Building Materials, 280. https://doi.org/10.1016/j.conbuildmat.2021.122520

Khalid, F., Saaidin, S., Shahidan, S., Othman, N., & Guntor, N. (2020). Strength of Concrete Containing Synthetic Wire Waste as Fiber Materials. IOP Conference Series: Materials Science and Engineering, 713(1). https://doi.org/10.1088/1757-899X/713/1/012003

Kumar, R., Kumar, M., Kumar, I., & Srivastava, D. (2021). A review on utilization of plastic waste materials in bricks manufacturing process. Materials Today: Proceedings, 46, 6775–6780. https://doi.org/10.1016/j.matpr.2021.04.337

Lozano-Rios, F., & Valle-Fernández, H. (2020). Diseño de un bloque de adobe, utilizando fibras de botellas plásticas, para reducir el costo y mejorar la resistencia a la compresión, Lamas 2020 [Tesis de Pregrado]. Universidad César Vallejo.

Lucas, A., & Harris, J. (2011). Ancient Egyptian Materials and Industries (4th ed.). Dover Publications.

Márquez-Domínguez, S., Mejía-Sánchez, E., & Renzano A. (2018). Soft Pre-stressed PET profiles as reinforcing fibers in structural elements made of concrete. DYNA, 85(206), 162–170. https://doi.org/10.15446/dyna.v85n206.71805

Menon, J., & Ravikumar, M. (2019). Evaluation of Laterite Soil Stabilized using Polymer Sack Fibers. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(6), 682–685. Recuperado de: https://www.ijitee.org/portfolio-item/e2948038519/

Meza-de Luna, A., Gurbir, K., Preciado-Martínez, H., & Gutiérrez-López, I. (2021). Desempeño a Flexión del Concreto Reforzado con Fibras Plásticas Recicladas. Conciencia Tecnológica, 61. Recuperado de: https://www.redalyc.org/comocitar.oa?id=94467989001

Ming, Y., Chen, P., Li, L., Gan, G., & Pan, G. (2021). A Comprehensive Review on the Utilization of Recycled Waste Fibers in Cement-Based Composites. Materials, 14(13), 3643. https://doi.org/10.3390/ma14133643

Ministerio de Vivienda, Construcción y Saneamiento. (2017). Norma Técnica E.080. Diseño y Construcción con Tierra Reforzada.

Ministerio de Vivienda, Construcción y Saneamiento. (2014). Norma Técnica E.070: Albañilería.

Mir, B., & Shah, R. (2019). How Stiffness of Reinforcement Affects the Type of Major Reinforcement Force Developed at Various Orientations in Reinforced Sand? (pp. 137–151). https://doi.org/10.1007/978-3-030-01944-0_11

Muntohar, A., Widianti, A., Hartono, E., & Diana, W. (2013). Engineering Properties of Silty Soil Stabilized with Lime and Rice Husk Ash and Reinforced with Waste Plastic Fiber. Journal of Materials in Civil Engineering, 25(9), 1260–1270. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000659

Nasrollahzadeh, K., & Zare, M. (2020). Experimental investigation on axially loaded adobe masonry columns confined by polymeric straps. Construction and Building Materials, 262. https://doi.org/10.1016/j.conbuildmat.2020.119895

Noa-Huaman, M., & Ordoñez-Claros, D. (2022). Adición de Fibras PET en el adobe para aumentar la capacidad resistente a la compresión, reducir: la densidad, el porcentaje de absorción de agua y la conductividad térmica en las viviendas de la zona rural de Ayacucho-Perú [Tesis de Pregrado]. Universidad Peruana de Ciencias Aplicadas.

Núñez-Aldás, G., López-Arboleda, A., Chérrez-Gavilanes, D., & Guevara-Robalino, J. (2021). Adición de botellas plásticas pet en la elaboración de bloques de adobe para viviendas unifamiliares y su efecto en la variación de temperatura y acondicionamiento acústico en el cantón Ambato, provincia de Tungurahua. Ciencia Digital, 5(1), 197–218. https://doi.org/10.33262/cienciadigital.v5i1.1536

Oliveira-Metzker, S., Freire-Sabino, T., Farinassi-Mendes, J., Cornélio-Ribeiro, A., & Farinassi-Mendes, R. (2022). Soil-Cement bricks development using polymeric waste. Environmental Science and Pollution Research Volume, 29, 21034–21048. https://doi.org/10.21203/rs.3.rs-451591/v1

Onochie, K., & Balkis, A. (2021). Polypropylene fiber reinforced Alker as a structurally stable and sustainable building material. Journal of Cleaner Production, 279. https://doi.org/10.1016/j.jclepro.2020.123600

Paschoalin-Filho, J., João, H., & Guerner-Dias, A. (2016). Evaluation of compressive strength and water absorption of soilcement bricks manufactured with addition of pet (polyethylene terephthalate) wastes. Acta Scientiarum, 38(2), 163–171. https://doi.org/10.4025/actascitechnol.v38i2.28458

Paucar-Sevillano, C. (2018). Diseño de un adobe con adición de poliestireno para la construcción de viviendas climatizadas en la zona rural del distrito de Caraz, Ancash - 2018 [Tesis de Pregrado]. Universidad César Vallejo.

Paul, S., Islam, M., & Elahi, T. (2022). Comparative effectiveness of fibers in enhancing engineering properties of Earth as a building Material: A review. Construction and Building Materials, 332. https://doi.org/10.1016/j.conbuildmat.2022.127366

Peña-Estrella, E., & Niño-Santos, J. (2019). Análisis del comportamiento de muros en adobe reforzados con fleje plástico en polipropileno y tiras plásticas reciclables de botellas de PET [Tesis de pregrado]. Universidad Militar Nueva Granada.

Pérez-Collantes, D. (2021). Influencia del plástico PET en las propiedades de ladrillos de concreto ecológicos para viviendas unifamiliares, Carabayllo – 2021 [Tesis de pregrado]. Universidad César Vallejo.

Pérez-Pérez, L. & Zamora-Fernández, H. (2020). Diseño de bloques de concreto modificados con fibras de plástico reciclado para la reducción de cargas en edificaciones, Tarapoto, 2020 [Tesis de pregrado]. Universidad César Vallejo.

Piñeros-Moreno, M., & Herrera-Muriel, R. (2018). Proyecto de factibilidad económica para la fabricación de bloques con agregados de plástico reciclado (PET), aplicados en la construcción de vivienda [Tesis de Pregrado]. Universidad Católica de Colombia.

Quispe-Crises, N. (2017). Evaluación del esfuerzo admisible del adobe estabilizado con fibras de pet triturado en la zona de mollepata provincia de Huamanga, Departamento de Ayacucho – 2016 [Tesis de pregrado]. Universidad Nacional De San Cristóbal De Huamanga.

Rabello, L., & da Conceição-Ribeiro, R. (2021). A novel vermiculite/ vegetable polyurethane resin-composite for thermal insulation eco-brick production. Composites Part B: Engineering, 221. https://doi.org/10.1016/j.compositesb.2021.109035

Radwan, M., Lee, F., Woon, Y., Yew, M., Mo, K., & Wai, S. (2021). A Study of the Strength Performance of Peat Soil: A Modified Cement-Based Stabilization Agent Using Fly Ash and Polypropylene Fiber. Polymers, 13(23), 4059. https://doi.org/10.3390/polym13234059

Ramakrishnan, S., Loganayagan, S., Kowshika, G., Ramprakash, C., & Aruneshwaran, M. (2021). Adobe blocks reinforced with natural fibres: A review. Materials Today: Proceedings, 45, 6493–6499. https://doi.org/10.1016/j.matpr.2020.11.377

Robalino-Sánchez, E. (2019). La adición de botellas plásticas PET en la elaboración de bloques de adobe para viviendas unifamiliares y su efecto en la variación de temperatura y acondicionamiento acústico en el cantón Ambato provincia de Tungurahua [Tesis de Pregrado]. Universidad Técnica de Ambato.

Ruiz, G., Zhang, X., Edris, W., Cañas, I., & Garijo, L. (2018). A comprehensive study of mechanical properties of compressed earth blocks. Construction and Building Materials, 176, 566–572. https://doi.org/10.1016/j.conbuildmat.2018.05.077

Safiuddin, M., Jumaat, Z., Salam, M., Islam, M., & Hashim, R. (2010). Utilization of solid wastes in construction materials. International Journal of the Physical Sciences, 5, 1952–1963. Recuperado de: https://academicjournals.org/journal/IJPS/article-full-text-pdf/1B5823B32355

Salaou, N., Thuo, J., Kabubo, C., & Gariy, Z. (2021). Performance of Polypropylene Fibre Reinforced Laterite Masonry Bricks. Civil Engineering and Architecture, 9(7), 2178–2186. https://doi.org/10.13189/cea.2021.090707

Salazar-Saucedo, J., & Tejada-Escobedo, Y. (2021). Análisis comparativo de la resistencia a la compresión de adobe estabilizado bajo los criterios de la Norma E080, Trujillo 2021 [Tesis de Pregrado]. Universidad Privada del Norte.

Salih, M., Osofero, A., & Imbabi, M. (2020a). Constitutive models for fibre reinforced soil bricks. Construction and Building Materials, 240. https://doi.org/10.1016/j.conbuildmat.2019.117806

Salih, M., Osofero, A., & Imbabi, M. (2020b). Critical review of recent development in fiber reinforced adobe bricks for sustainable construction. Frontiers of Structural and Civil Engineering, 14(4), 839–854. https://doi.org/10.1007/s11709-020-0630-7

Sandoval-Saucedo, J., & Guzmán-Hasegawa, R. (2019). Propuesta de elaboración y diseño de bloques de concreto simple y pet reciclado para muros de mampostería en la ciudad de Piura [Tesis de Pregrado]. Universidad César Vallejo.

Serrano, S., Barreneche, C., & Cabeza, L. (2016). Use of by-products as additives in adobe bricks: Mechanical properties characterisation. Construction and Building Materials, 108, 105–111. https://doi.org/10.1016/j.conbuildmat.2016.01.044

Sharma, S., Sudhakara, P., Misra, S., & Singh, J. (2021). Critical review on the Solid-wastes issue: Generation, Composition, Disposal and their recycling potential for various applications. Journal of Physics: Conference Series, 1804(1). https://doi.org/10.1088/1742-6596/1804/1/012147

Solís, M., Torrealva, D., Santillán, P., & Montoya, G. (2015). Análisis del comportamiento a flexión de muros de adobe reforzados con geomallas. Informes de La Construcción, 67(539), e092. https://doi.org/10.3989/ic.13.141

Subramania-Prasad, C. (2013). A Study on the Utilization of Plastic Wastes in Stabilized Masonry Blocks [Doctoral Thesis]. Cochin University of Science and Technology.

Subramania-Prasad, C., Abraham, B., & Kunhanandan-Nambiar, E. (2014). Sorption characteristics of stabilised soil blocks embedded with waste plastic fibres. Construction and Building Materials, 63, 25–32. https://doi.org/10.1016/j.conbuildmat.2014.03.042

Subramania-Prasad, C., Kunhanandan-Nambiar, E., & Mathews-Abraham, B. (2011). Plastic Fibre Reinforced Soil Blocks as a Sustainable Building Material. International Journal of Advancements in Research & Technology, 1(5). Recuperado de: https://www.researchgate.net/publication/258650289_Plastic_Fibre_Reinforced_Soil_Blocks_as_a_Sustainable_Building_Material

Sujatha, E., & Selsia-Devi, S. (2018). Reinforced soil blocks: Viable option for low cost building units. Construction and Building Materials, 189, 1124–1133. https://doi.org/10.1016/j.conbuildmat.2018.09.077

Abad-Flores, J. (2020). Aplicación de poliestireno expandido para mejorar la resistencia mecánica del adobe en el sitio Arqueológico de Pachacamac -Lima -2020 [Tesis de Pregrado]. Universidad César Vallejo.

ABNT. (2008). ABNT. NBR 8800. Proyecto de estructuras de acero y de estructuras mixtas de acero y concreto de edificios.

Ahmad, A., Pekrioglu-Balkis, A., & Kurtis-Onochie, K. (2022). The use of shredded plastic wastes in Alker production and its effect on compressive strength and shrinkage properties. Alexandria Engineering Journal, 61(2), 1563–1570. https://doi.org/10.1016/j.aej.2021.06.062

Araya-Letelier, G., Concha-Riedel, J., Antico, F., & Sandoval, C. (2019a). Experimental mechanical-damage assessment of earthen mixes reinforced with micro polypropylene fibers. Construction and Building Materials, 198, 762–776. https://doi.org/10.1016/j.conbuildmat.2018.11.261

Araya-Letelier, G., Duy, E., Reidel, Ú., Kunze, S., Burbano, C., & Saavedra, E. (2019b). Bloques de adobe reforzados tranversalmente con plástico de botellas recicladas. Recuperación de Estructuras: Primeras Jornadas Internacionales de Estudiantes Investigadores, 168–180. Recuperado de: https://www.researchgate.net/publication/337227755_BLOQUES_DE_ADOBE_REFORZADOS_TRANSVERSALMENTE_CON_PLASTICO_DE_BOTELLAS_RECICLADAS

Araya-Letelier, G., Gonzalez-Calderon, H., Kunze, S., Burbano-Garcia, C., Reidel, U., Sandoval, C., & Bas, F. (2020). Waste-based natural fiber reinforcement of adobe mixtures: Physical, mechanical, damage and durability performance assessment. Journal of Cleaner Production, 273, 122806. https://doi.org/10.1016/j.jclepro.2020.122806

Ascencios-Mostacero, S. (2020). Propiedades de un adobe estructural con adición de cascarilla de arroz y plástico reciclado molido aplicado a viviendas climatizadas en Alto Perú, Ancash-2019 [Tesis de Pregrado]. Universidad César Vallejo.

Associação Brasileira de Normas Técnicas. (1984). NBR 8492: 1984. Tijolo de Solo-cimento-Resistência e Absorção.

ASTM International. (2009). ASTM D5102-09: Standard test method for unconfined compressive strength of cohesive soil.

ASTM International. (2015a). ASTM C127-15: Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate.

ASTM International. (2015b). ASTM C349-15: Standard test method for compressive strength of hydraulic-cement mortars (using portions of prisms broken in flexure).

ASTM International. (2015c). ASTM D695-15: Standard test method for compressive properties of rigid plastics.

ASTM International. (2016). ASTM C109/C109M-16a: Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens).

ASTM International. (2017a). ASTM D1633-17: Standard Test Methods for Compressive Strength of Molded Soil-Cement Cylinders.

ASTM International. (2017b). ASTM D6913-17: Standard test methods for particle-size distribution (gradation) of soils using sieve analysis.

ASTM International. (2017c). ASTM D7928-17: Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis.

Aznarán-Monzón, G. (2018). Influencia del plástico reciclado en las propiedades físicas y mecánicas del adobe en el distrito de Santa – Ancash - 2018 [Tesis de Pregrado]. Universidad César Vallejo.

Bailón-Espinoza, J., & Huatuco-Cordova, E. (2021). Uso de plástico PET como agregado en la fabricación de unidades de albañilería ecológica para la construcción de muros de cerramiento en el sector Cooperativa Santa Isabel, distrito de Huancayo, al 2021 [Tesis de Pregrado]. Universidad Continental.

Balan, K., Roja, S., & Thasneem, A. (2021). Soil Stabilization with Rubber Latex and Human Hair Fibre– An Overview Paper. Journal of Advances in Geotechnical Engineering, 4(1), 1–5. https://doi.org/10.5281/ZENODO.4693807

Barriola, J., & Ginoccio, F. (1983). Experiencias con los Métodos de Campo de Clasificación de Suelos para la Construcción de Adobe. PUCP.

Barturen-Payano, G. (2020). Incorporación de fibras de plástico PET reciclado para mejorar el adobe tradicional en el Pueblo Joven El Nazareno-Chiclayo-2020 [Tesis de Pregrado]. Universidad César Vallejo.

Bertelsen, I., Belmonte, L., Fischer, G., & Ottosen, L. (2021). Influence of synthetic waste fibres on drying shrinkage cracking and mechanical properties of adobe materials. Construction and Building Materials, 286. https://doi.org/10.1016/j.conbuildmat.2021.122738

Binici, H., Aksogan, O., Bodur, M., Akca, E., & Kapur, S. (2007). Thermal isolation and mechanical properties of fibre reinforced mud bricks as wall materials. Construction and Building Materials, 21(4), 901–906. https://doi.org/10.1016/j.conbuildmat.2005.11.004

Binici, H., Aksogan, O., & Shah, T. (2005). Investigation of fibre reinforced mud brick as a building material. Construction and Building Materials, 19(4), 313–318. https://doi.org/10.1016/j.conbuildmat.2004.07.013

Binshad, A., Kavya, P., Sonij, P., Sreelal, C., & Shajeena, K. (2018). Study on stabilized earthen block reinforced with straw fibers. International Research Journal of Engineering and Technology (IRJET), 5(5), 1–4. Recuperado de: https://www.irjet.net/archives/V5/i5/IRJET-5I5399.pdf

Brito-del Pino, J., Santamaría-Herrera, N., Macas-Peñarand, C., & Tasán-Cruz, D. (2021). Elaboración de adobe sostenible. DAYA. Diseño, Arte y Arquitectura, 11, 59–79. https://doi.org/10.33324/daya.vi11.459

Burbano-Garcia, C., Araya-Letelier, G., Astroza, R., & Silva, Y. (2022). Adobe mixtures reinforced with fibrillated polypropylene fibers: Physical/mechanical/fracture/durability performance and its limits due to fiber clustering. Construction and Building Materials, 343, 128102. https://doi.org/10.1016/j.conbuildmat.2022.128102

Bureau of Indian Standards. (1980). IS 2710: Methods of test for soil-cement blocks.

Bureau of Indian Standards. (1982). IS 1725 (1982): Soil based blocks used in general building construction.

Bureau of Indian Standards. (1986). IS 2720-13: Methods of test for soils, Part 13: Direct shear test.

Bureau of Indian Standards. (1992). IS 3495. Methods of tests of burnt clay building bricks.

Calatan, G., Hegyi, A., Dico, C., & Mircea, C. (2016). Determining the Optimum Addition of Vegetable Materials in Adobe Bricks. Procedia Technology, 22, 259–265. https://doi.org/10.1016/j.protcy.2016.01.077

Campos-Barboza, K., Gomez-Montalban, F., Montero-Nuñez, M., Pantoja-Guillen, F., & Pasco-Soto, J. (2019). Diseño del Proceso de Producción de Ladrillos Basados en Plástico Reciclado [Tesis de Pregrado]. Universidad de Piura

Candenas-Tacac, J., Huancachoque-Leon, R., & Juanpedro-Cisneros, W. (2018). Uso de fibras de polietileno tereftalato para el refuerzo del adobe tradicional [Tesis de Pregrado]. Universidad San Ignacio de Loyola.

Ccansaya-Saldaña, K., & Piña-Pereyra, D. (2021). Diseño Sismorresistente de Vivienda de Albañilería Confinada Utilizando Bloques de Concreto con Polímeros Plásticos, Villa El Salvador – 2021 [Tesis de Pregrado]. Universidad César Vallejo.

Cerna-Livia, M., & Velásquez, C. (2021). Estudios de propiedades mecánicas del adobe con adición de viruta de madera y tereftalato de polietileno en Aquia – Ancash 2021. [Tesis de Pregrado]. Universidad César Vallejo.

Chib, N., & Sharma, T. (2021). Experimental Investigation on Mechanical Properties of Compressed Soil Blocks Manufactured Using Waste Materials. IOP Conference Series: Earth and Environmental Science, 889(1). https://doi.org/10.1088/1755-1315/889/1/012012

Consoli, N., Montardo, J., Prietto, P., & Pasa, G. (2002). Engineering Behavior of a Sand Reinforced with Plastic Waste. Journal of Geotechnical and Geoenvironmental Engineering, 128(6), 462–472. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(462)

Cordell, L. (1996). Ancient Pueblo Peoples (Exploring the ancient world). Smithsonian.

Correa-Carlos, A., & Puican-Cumpa, P. (2021). Caracterización física y mecánica del adobe incorporando fibras de cabuya y polímero reciclado PET en la ciudad de Ferreñafe, Lambayeque [Tesis de Pregrado]. Universidad César Vallejo.

Cuitiño-Rosales, M., Rotondaro, R., & Esteves, A. (2020). Comparative analysis of thermal aspects and mechanical resistance of building materials and elements with earth. Revista de Arquitectura (Bogotá), 22(1), 138–151. https://doi.org/10.14718/revarq.2020.2348

Deboucha, S., & Hashim, R. (2011). A review on bricks and stabilized compressed earth blocks. Scientific Research and Essays, 6(3), 499–506. https://doi.org/10.5897/SRE09.356

Di Marco-Morales, R., & León-Téllez, H. (2017). Ladrillos con adición de PET- una solución amigable para núcleos rurales del municipio del Socorro. 5to Simposio Internacional de Investigación En Ciencias Económicas 5to Simposio Internacional de Investigación En Ciencias Económicas, Administrativas y Contables - Sociedad y Desarrollo, Administrativas y Contables, 1–42. https://doi.org/10.18041/2027-1212/centauro.11.2016.2448

Donkor, P., & Obonyo, E. (2015). Earthen construction materials: Assessing the feasibility of improving strength and deformability of compressed earth blocks using polypropylene fibers. Materials & Design, 83, 813–819. https://doi.org/10.1016/j.matdes.2015.06.017

Donkor, P., Obonyo, E., & Ferraro, C. (2021). Fiber Reinforced Compressed Earth Blocks: Evaluating Flexural Strength Characteristics Using Short Flexural Beams. Materials, 14(22), 6906. https://doi.org/10.3390/ma14226906

Dueñas, B., Soto, W., & Carrera, E. (2021). Evaluation of the Thermic Efficiency of the Prototype at Scale of a Sustainable Housing that Uses Concrete with PET Fibers (CFP) and the Trombe System. IOP Conference Series: Materials Science and Engineering, 1054(1). https://doi.org/10.1088/1757-899X/1054/1/012006

El-Emam, M., & Al-Tamimi, A. (2022). Strength and Deformation Characteristics of Dune Sand Earth Blocks Reinforced with Natural and Polymeric Fibers. Sustainability, 14(8). https://doi.org/10.3390/su14084850

European Committee for Standardization. (2003). UNE-EN 771-1:2003: Specification for masonry units - Part 1: Clay masonry units. European Committee for Standardization.

European Committee for Standardization. (2011). EN 772-1:2011: Methods of test for masonry units - Part 1: Determination of compressive strength. European Committee for Standardization.

European Committee for Standardization. (2016). EN 1052-2:2016: Geotextiles and geotextile-related products - Determination of the tensile properties - Part 2: Wide-width tensile test. European Committee for Standardization.

European Committee for Standardization. (2019). EN 1015-11:2019. Test methods for mortars for masonry Part 11: Determination of flexural and compressive strength of hardener mortar. European Committee for Standardization.

Farias-Solano, M. (2019). Influencia del porcentaje de polietileno tereftalato en las propiedades físicas y mecánicas del bloque de concreto - 2018 [Tesis de Pregrado]. Universidad César Vallejo.

Galán-Marín, C., Rivera-Gómez, C., & Bradley, F. (2013). Ultrasonic, Molecular and Mechanical Testing Diagnostics in Natural Fibre Reinforced, Polymer-Stabilized Earth Blocks. International Journal of Polymer Science, 2013, 1–10. https://doi.org/10.1155/2013/130582

Gama-Castro, J., Cruz, T., Pi-Puig, T., Alcalá-Martínez, R., Cabadas-Báez, H., Jasso-Castañeda, C., Díaz-Ortega, J., Sánchez-Pérez, S., López-Aguilar, F., & Vilanova, R. (2012). Arquitectura de tierra: el adobe como material de construcción en la época prehispánica. Boletín de La Sociedad Geológica Mexicana, 64(2), 177–188. http://dx.doi.org/10.18268/BSGM2012v64n2a3

Gandia, R., Gomes, F., Corrêa, A., Rodrigues, M., & Mendes, R. (2019). Physical, mechanical and thermal behavior of adobe stabilized with glass fiber reinforced polymer waste. Construction and Building Materials, 222, 168–182. https://doi.org/10.1016/j.conbuildmat.2019.06.107

Goli, V., Mohammad, A., & Singh, D. (2020). Application of Municipal Plastic Waste as a Manmade Neo-construction Material: Issues & Wayforward. Resources, Conservation and Recycling, 161. https://doi.org/10.1016/j.resconrec.2020.105008

Gordillo-Monteza, C. (2020). Evaluación de la resistencia a compresión de ladrillos ecológicos con aplicación de tereftalato de polietileno, Moyobamba, 2020 [Tesis de Pregrado]. Universidad César Vallejo.

Goutsaya, J., Ntamack, G., Kenmeugne, B., & Charif-d’Ouazzane, S. (2021). Mechanical characteristics of compressed earth blocks, compressed stabilized earth blocks and stabilized adobe bricks with cement in the town of Ngaoundere - Cameroon. Journal of Building Materials and Structures, 8(2), 139–159. https://doi.org/10.34118/jbms.v8i2.1441

Guio-Pérez, M. (2019). Comportamiento mecánico de bloques comprimidos de suelo cemento al 6% con fibras sintéticas de PET [Tesis de Pregrado]. Universidad Militar Nueva Granada.

Gutiérrez-Villalobos, J., Moreno-Martínez, J., Catalán-Quiroz, P., & Galván-Chávez, A. (2021). Characterization of adobe bricks used in developing countries: Mexico as a case of study. Journal of Architecture and Design, 5(13), 1–12. https://doi.org/10.35429/JAD.2021.13.5.1.12

Hejazi, S., Sheikhzadeh, M., Abtahi, S., & Zadhoush, A. (2012). A simple review of soil reinforcement by using natural and synthetic fibers. Construction and Building Materials, 30, 100–116. https://doi.org/10.1016/j.conbuildmat.2011.11.045

Illampas, R., Ioannou, I., & Charmpis, D. (2014). Adobe bricks under compression: Experimental investigation and derivation of stress–strain equation. Construction and Building Materials, 53, 83–90. https://doi.org/10.1016/j.conbuildmat.2013.11.103

Inga-Castro, A. (2019). Diseño de un adobe con poliestireno expandido reciclado para una vivienda climatizada en la zona rural de Piruruyoc, Huaraz - Ancash, 2019 [Tesis de Pregrado]. Universidad César Vallejo.

Instituto Colombiano de Normas Técnicas y Certificación. (1998). NTC 3495: Bloques y ladrillos de concreto. Instituto Colombiano de Normas Técnicas y Certificación.

Instituto Colombiano de Normas Técnicas y Certificación. (2000. NTC 4205. Ingeniería Civil y Arquitectura. Unidades de Mampostería de Arcilla Cocida. Ladrillos y Bloques Cerámicos. Instituto Colombiano de Normas Técnicas y Certificación

Instituto Nacional de Calidad. (2003). NTP 330.613: Agua. Evaluación de la calidad.

Instituto Nacional de Defensa Civil. (2005). NTP 339.034: Resistencia a la compresión. Instituto Nacional de Defensa Civil.

Instituto Nacional de Normalización. (2008). NCh 851:2008: Muros de contención de tierra armada. Instituto Nacional de Normalización.

Islam, M., Islam, K., Shahjalal, M., Khatun, E., Islam, S., & Razzaque, A. (2022). Influence of different types of fibers on the mechanical properties of recycled waste aggregate concrete. Construction and Building Materials, 337, 127577. https://doi.org/10.1016/j.conbuildmat.2022.127577

Jannat, N., Hussien, A., Abdullah, B., & Cotgrave, A. (2020). Application of agro and non-agro waste materials for unfired earth blocks construction: A review. Construction and Building Materials, 254, 119346. https://doi.org/10.1016/j.conbuildmat.2020.119346

Jayaram, M., Kastro-Kiran, V., & Karthik, T. (2021). Characteristics of Bricks with Virgin Plastic and Bottom Ash. IOP Conference Series: Materials Science and Engineering, 1057, 012080. https://doi.org/10.1088/1757-899X/1057/1/012080

Kasinikota, P., & Tripura, D. (2021). Evaluation of compressed stabilized earth block properties using crushed brick waste. Construction and Building Materials, 280. https://doi.org/10.1016/j.conbuildmat.2021.122520

Khalid, F., Saaidin, S., Shahidan, S., Othman, N., & Guntor, N. (2020). Strength of Concrete Containing Synthetic Wire Waste as Fiber Materials. IOP Conference Series: Materials Science and Engineering, 713(1). https://doi.org/10.1088/1757-899X/713/1/012003

Kumar, R., Kumar, M., Kumar, I., & Srivastava, D. (2021). A review on utilization of plastic waste materials in bricks manufacturing process. Materials Today: Proceedings, 46, 6775–6780. https://doi.org/10.1016/j.matpr.2021.04.337

Lozano-Rios, F., & Valle-Fernández, H. (2020). Diseño de un bloque de adobe, utilizando fibras de botellas plásticas, para reducir el costo y mejorar la resistencia a la compresión, Lamas 2020 [Tesis de Pregrado]. Universidad César Vallejo.

Lucas, A., & Harris, J. (2011). Ancient Egyptian Materials and Industries (4th ed.). Dover Publications.

Márquez-Domínguez, S., Mejía-Sánchez, E., & Renzano A. (2018). Soft Pre-stressed PET profiles as reinforcing fibers in structural elements made of concrete. DYNA, 85(206), 162–170. https://doi.org/10.15446/dyna.v85n206.71805

Menon, J., & Ravikumar, M. (2019). Evaluation of Laterite Soil Stabilized using Polymer Sack Fibers. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(6), 682–685. Recuperado de: https://www.ijitee.org/portfolio-item/e2948038519/

Meza-de Luna, A., Gurbir, K., Preciado-Martínez, H., & Gutiérrez-López, I. (2021). Desempeño a Flexión del Concreto Reforzado con Fibras Plásticas Recicladas. Conciencia Tecnológica, 61. Recuperado de: https://www.redalyc.org/comocitar.oa?id=94467989001

Ming, Y., Chen, P., Li, L., Gan, G., & Pan, G. (2021). A Comprehensive Review on the Utilization of Recycled Waste Fibers in Cement-Based Composites. Materials, 14(13), 3643. https://doi.org/10.3390/ma14133643

Ministerio de Vivienda, Construcción y Saneamiento. (2017). Norma Técnica E.080. Diseño y Construcción con Tierra Reforzada.

Ministerio de Vivienda, Construcción y Saneamiento. (2014). Norma Técnica E.070: Albañilería.

Mir, B., & Shah, R. (2019). How Stiffness of Reinforcement Affects the Type of Major Reinforcement Force Developed at Various Orientations in Reinforced Sand? (pp. 137–151). https://doi.org/10.1007/978-3-030-01944-0_11

Muntohar, A., Widianti, A., Hartono, E., & Diana, W. (2013). Engineering Properties of Silty Soil Stabilized with Lime and Rice Husk Ash and Reinforced with Waste Plastic Fiber. Journal of Materials in Civil Engineering, 25(9), 1260–1270. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000659

Nasrollahzadeh, K., & Zare, M. (2020). Experimental investigation on axially loaded adobe masonry columns confined by polymeric straps. Construction and Building Materials, 262. https://doi.org/10.1016/j.conbuildmat.2020.119895

Noa-Huaman, M., & Ordoñez-Claros, D. (2022). Adición de Fibras PET en el adobe para aumentar la capacidad resistente a la compresión, reducir: la densidad, el porcentaje de absorción de agua y la conductividad térmica en las viviendas de la zona rural de Ayacucho-Perú [Tesis de Pregrado]. Universidad Peruana de Ciencias Aplicadas.

Núñez-Aldás, G., López-Arboleda, A., Chérrez-Gavilanes, D., & Guevara-Robalino, J. (2021). Adición de botellas plásticas pet en la elaboración de bloques de adobe para viviendas unifamiliares y su efecto en la variación de temperatura y acondicionamiento acústico en el cantón Ambato, provincia de Tungurahua. Ciencia Digital, 5(1), 197–218. https://doi.org/10.33262/cienciadigital.v5i1.1536

Oliveira-Metzker, S., Freire-Sabino, T., Farinassi-Mendes, J., Cornélio-Ribeiro, A., & Farinassi-Mendes, R. (2022). Soil-Cement bricks development using polymeric waste. Environmental Science and Pollution Research Volume, 29, 21034–21048. https://doi.org/10.21203/rs.3.rs-451591/v1

Onochie, K., & Balkis, A. (2021). Polypropylene fiber reinforced Alker as a structurally stable and sustainable building material. Journal of Cleaner Production, 279. https://doi.org/10.1016/j.jclepro.2020.123600

Paschoalin-Filho, J., João, H., & Guerner-Dias, A. (2016). Evaluation of compressive strength and water absorption of soilcement bricks manufactured with addition of pet (polyethylene terephthalate) wastes. Acta Scientiarum, 38(2), 163–171. https://doi.org/10.4025/actascitechnol.v38i2.28458

Paucar-Sevillano, C. (2018). Diseño de un adobe con adición de poliestireno para la construcción de viviendas climatizadas en la zona rural del distrito de Caraz, Ancash - 2018 [Tesis de Pregrado]. Universidad César Vallejo.

Paul, S., Islam, M., & Elahi, T. (2022). Comparative effectiveness of fibers in enhancing engineering properties of Earth as a building Material: A review. Construction and Building Materials, 332. https://doi.org/10.1016/j.conbuildmat.2022.127366

Peña-Estrella, E., & Niño-Santos, J. (2019). Análisis del comportamiento de muros en adobe reforzados con fleje plástico en polipropileno y tiras plásticas reciclables de botellas de PET [Tesis de pregrado]. Universidad Militar Nueva Granada.

Pérez-Collantes, D. (2021). Influencia del plástico PET en las propiedades de ladrillos de concreto ecológicos para viviendas unifamiliares, Carabayllo – 2021 [Tesis de pregrado]. Universidad César Vallejo.

Pérez-Pérez, L. & Zamora-Fernández, H. (2020). Diseño de bloques de concreto modificados con fibras de plástico reciclado para la reducción de cargas en edificaciones, Tarapoto, 2020 [Tesis de pregrado]. Universidad César Vallejo.

Piñeros-Moreno, M., & Herrera-Muriel, R. (2018). Proyecto de factibilidad económica para la fabricación de bloques con agregados de plástico reciclado (PET), aplicados en la construcción de vivienda [Tesis de Pregrado]. Universidad Católica de Colombia.

Quispe-Crises, N. (2017). Evaluación del esfuerzo admisible del adobe estabilizado con fibras de pet triturado en la zona de mollepata provincia de Huamanga, Departamento de Ayacucho – 2016 [Tesis de pregrado]. Universidad Nacional De San Cristóbal De Huamanga.

Rabello, L., & da Conceição-Ribeiro, R. (2021). A novel vermiculite/ vegetable polyurethane resin-composite for thermal insulation eco-brick production. Composites Part B: Engineering, 221. https://doi.org/10.1016/j.compositesb.2021.109035

Radwan, M., Lee, F., Woon, Y., Yew, M., Mo, K., & Wai, S. (2021). A Study of the Strength Performance of Peat Soil: A Modified Cement-Based Stabilization Agent Using Fly Ash and Polypropylene Fiber. Polymers, 13(23), 4059. https://doi.org/10.3390/polym13234059

Ramakrishnan, S., Loganayagan, S., Kowshika, G., Ramprakash, C., & Aruneshwaran, M. (2021). Adobe blocks reinforced with natural fibres: A review. Materials Today: Proceedings, 45, 6493–6499. https://doi.org/10.1016/j.matpr.2020.11.377

Robalino-Sánchez, E. (2019). La adición de botellas plásticas PET en la elaboración de bloques de adobe para viviendas unifamiliares y su efecto en la variación de temperatura y acondicionamiento acústico en el cantón Ambato provincia de Tungurahua [Tesis de Pregrado]. Universidad Técnica de Ambato.

Ruiz, G., Zhang, X., Edris, W., Cañas, I., & Garijo, L. (2018). A comprehensive study of mechanical properties of compressed earth blocks. Construction and Building Materials, 176, 566–572. https://doi.org/10.1016/j.conbuildmat.2018.05.077

Safiuddin, M., Jumaat, Z., Salam, M., Islam, M., & Hashim, R. (2010). Utilization of solid wastes in construction materials. International Journal of the Physical Sciences, 5, 1952–1963. Recuperado de: https://academicjournals.org/journal/IJPS/article-full-text-pdf/1B5823B32355

Salaou, N., Thuo, J., Kabubo, C., & Gariy, Z. (2021). Performance of Polypropylene Fibre Reinforced Laterite Masonry Bricks. Civil Engineering and Architecture, 9(7), 2178–2186. https://doi.org/10.13189/cea.2021.090707

Salazar-Saucedo, J., & Tejada-Escobedo, Y. (2021). Análisis comparativo de la resistencia a la compresión de adobe estabilizado bajo los criterios de la Norma E080, Trujillo 2021 [Tesis de Pregrado]. Universidad Privada del Norte.

Salih, M., Osofero, A., & Imbabi, M. (2020a). Constitutive models for fibre reinforced soil bricks. Construction and Building Materials, 240. https://doi.org/10.1016/j.conbuildmat.2019.117806

Salih, M., Osofero, A., & Imbabi, M. (2020b). Critical review of recent development in fiber reinforced adobe bricks for sustainable construction. Frontiers of Structural and Civil Engineering, 14(4), 839–854. https://doi.org/10.1007/s11709-020-0630-7

Sandoval-Saucedo, J., & Guzmán-Hasegawa, R. (2019). Propuesta de elaboración y diseño de bloques de concreto simple y pet reciclado para muros de mampostería en la ciudad de Piura [Tesis de Pregrado]. Universidad César Vallejo.

Serrano, S., Barreneche, C., & Cabeza, L. (2016). Use of by-products as additives in adobe bricks: Mechanical properties characterisation. Construction and Building Materials, 108, 105–111. https://doi.org/10.1016/j.conbuildmat.2016.01.044

Sharma, S., Sudhakara, P., Misra, S., & Singh, J. (2021). Critical review on the Solid-wastes issue: Generation, Composition, Disposal and their recycling potential for various applications. Journal of Physics: Conference Series, 1804(1). https://doi.org/10.1088/1742-6596/1804/1/012147

Solís, M., Torrealva, D., Santillán, P., & Montoya, G. (2015). Análisis del comportamiento a flexión de muros de adobe reforzados con geomallas. Informes de La Construcción, 67(539), e092. https://doi.org/10.3989/ic.13.141

Subramania-Prasad, C. (2013). A Study on the Utilization of Plastic Wastes in Stabilized Masonry Blocks [Doctoral Thesis]. Cochin University of Science and Technology.

Subramania-Prasad, C., Abraham, B., & Kunhanandan-Nambiar, E. (2014). Sorption characteristics of stabilised soil blocks embedded with waste plastic fibres. Construction and Building Materials, 63, 25–32. https://doi.org/10.1016/j.conbuildmat.2014.03.042

Subramania-Prasad, C., Kunhanandan-Nambiar, E., & Mathews-Abraham, B. (2011). Plastic Fibre Reinforced Soil Blocks as a Sustainable Building Material. International Journal of Advancements in Research & Technology, 1(5). Recuperado de: https://www.researchgate.net/publication/258650289_Plastic_Fibre_Reinforced_Soil_Blocks_as_a_Sustainable_Building_Material

Sujatha, E., & Selsia-Devi, S. (2018). Reinforced soil blocks: Viable option for low cost building units. Construction and Building Materials, 189, 1124–1133. https://doi.org/10.1016/j.conbuildmat.2018.09.077

Tavares, G., & Magalhães, M. (2019). Effect Of Recycled Pet Fibers Inclusion On The Shrinkage Of Adobe Brick. 3 Rd International Conference on Bio-Based Building Materials, 37(2), 545–550. https://doi.org/10.26168/icbbm2019.79

Thakare, A., Singh, A., Gupta, V., Siddique, S., & Chaudhary, S. (2021). Sustainable development of self-compacting cementitious mixes using waste originated fibers: A review. Resources, Conservation and Recycling, 168. https://doi.org/10.1016/j.resconrec.2020.105250

UNE. (2018). UNE-EN 196-1:2018. Métodos de ensayo de cementos. Parte 1: Determinación de resistencias.

Vázquez-Greciano, A. (2018). Refuerzo estructural con PET reutilizado. Aplicación en adobe [Tesis de Pregrado]. Escuela Técnica Superior de Arquitectura de Madrid.

Vignesh, N., Arunachelam, N., Mahendran, K., & Dinesh Kumar, B. (2021). A Study on Polymeric Fibre Reinforced Stabilized Mud Blocks. IOP Conference Series: Materials Science and Engineering, 1026(1), 012010. https://doi.org/10.1088/1757-899X/1026/1/012010

Wang, S., Chen, F., Xue, Q., & Zhang, P. (2020). Splitting Tensile Strength of Cement Soil Reinforced with Basalt Fibers. Materials, 13(14). https://doi.org/10.3390/ma13143110

Yazici, M. F., & Keskin, N. (2021). A Review on Soil Reinforcement Technology by Using Natural and Synthetic Fibers. Erzincan Üniversitesi Journal of Science and Technology, 14(2), 631–663. https://doi.org/10.18185/erzifbed.874339

Yetgin, S., Cavdar, O., & Cavdar, A. (2008). The effects of the fiber contents on the mechanic properties of the adobes. Construction and Building Materials, 22(3), 222–227. https://doi.org/10.1016/j.conbuildmat.2006.08.022