Artificial Neural Network Model to Predict the Factor of Safety in Earth Dams Subjected to Rapid Drawdown

##plugins.themes.bootstrap3.article.main##

Isaida Flores Berenguer

Yoermes González Haramboure

Jenny García Tristá

Alejandro Rosete Suárez


Keywords:
earth dams, slope stability, factor of safety, rapid drawdown, artificial neural networks presas de tierra, estabilidad de taludes, factor de seguridad, desembalse rápido, redes neuronales artificiales

Abstract

Rapid drawdown has been identified as one of the most frequent causes of slope failures due to the effects associated with drought and operational changes when incorporating hydroelectric plants, which influence the filling level of earth dams. The main goal of this research is to obtain predictive models based on Artificial Neural Networks that return the factor of safety of the upstream slope in homogeneous earth dams in the face of the effect of rapid drawdown. Three geometries and 40 soils were defined to form the embankment, from which hybrid numerical models of transient water flow with unsaturated soils were built, considering three discharge speeds. From these results, a database was built to develop the predictive models, by means of the KNIME program and an algorithm based on Artificial Neural Networks. The behavior of the factor of safety as a function of time is also analyzed to establish its recovery intervals. Main results show that the minimum factor of safety is obtained between 52 % and 88 % of the total drawdown time. Regarding the predictive models, the adjusted R2 determination coefficients were greater than 95 % in all cases and the errors remained below 10 %. This demonstrates a high effectiveness of this algorithm and the validity of its application to geotechnical problems.

##plugins.themes.revistapolitecnica.stadistisDownloadTitle##

Downloads

Download data is not yet available.




Article Details

References

Alfatlawi, T. J. M., Al-Temimi, Y. K., & Alomari, Z. M. (2020). Evaluation of the upstream slope stability of earth dams based on drawdown conditions - Khassa Chai Dam: A case study. IOP Conference Series: Materials Science and Engineering, 671(1). https://doi.org/10.1088/1757-899X/671/1/012072

Alonso, E. E., & Pinyol, N. M. (2016). Numerical analysis of rapid drawdown: Applications in real cases. Water Science and Engineering, 9(3), 175–182. https://doi.org/10.1016/j.wse.2016.11.003

Anting, N. (2022). DATA SCIENCE with KNIME: Data Exploration, Machine Learning and Visualization using CODELESS Visual Programming. In Data science with KNIME.

Aubertin, M., Mbonimpa, M., Bussière, B., & Chapuis, R. P. (2003). A model to predict the water retention curve from basic geotechnical properties. Canadian Geotechnical Journal, 1122, 1104–1122. https://doi.org/10.1139/T03-054

Barredo-Arrieta, A., Díaz-Rodríguez, N., Del, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-López, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial Intelligence ( XAI ): Concepts , taxonomies , opportunities and challenges toward responsible AI. Information Fusion, 58(December 2019), 82–115. https://doi.org/10.1016/j.inffus.2019.12.012

Beiranvand, B., & Komasi, M. (2021). Study of the Arching Ratio in Earth Dam by Comparing the Results of Monitoring with Numerical Analysis (Case Study: Marvak Dam). Iranian Journal of Science and Technology - Transactions of Civil Engineering, 45(2), 1183–1195. https://doi.org/10.1007/s40996-020-00519-1

Bhaskar, P., Puppala, A., & Boluk, B. (2022). Influence of Unsaturated Hydraulic Properties on Transient Seepage and Stability Analysis of an Earthen Dam. Int. J. Geomech, 22(7), 1–12. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002414

Bongiorno, F., Angulo, N., & Belandria, N. (2015). Evaluación del Riesgo en Desprendimiento y Caracterización Geomecánica de los Taludes Rocosos en el Sector Quebrada del Diablo Mérida. Revista Politécnica, 36(3). Available in: https://revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/659

Boushehrian, A. H., Rezaee, A., & Vafamand, A. (2017). Studying the Effect of Horizontal Drains on Stability of Heterogeneous and Homogeneous Earth Dams during Rapid Drawdown Condition. Journal of Structural Engeneering and Geotechnics, 7(1), 31–45.

Bui, D. T., Moayedi, H., Gör, M., Jaafari, A., & Foong, L. K. (2019). Predicting slope stability failure through machine learning paradigms. ISPRS International Journal of Geo-Information, 8(9). https://doi.org/10.3390/ijgi8090395

El-Hazek, A. N., Abdel-Mageed, N., & Hadid, M. (2020). Numerical and experimental modelling of slope stability and seepage water of earthfill dam. Journal of Water and Land Development, 44(I_III), 55–64. https://doi.org/10.24425/jwld.2019.127046.Abstract

Flores, I., Haramboure, Y. G., Días, J., & Tristá, J. G. (2022). Estudio de la estabilidad de taludes ante procesos de desembalse rápido en presas. Ingeniería Hidráulica y Ambiental, XLIII(03), 64–72. Available in: https://search.ebscohost.com/login.aspx?direct=true&db=edsdoj&AN=edsdoj.5af06550472049faafda0b4e8ff949ff&lang=es&site=eds-live&scope=site.

Flores, I., Hernández, F. M., Haramboure, Y., & Tristá, J. (2023). Relationship between soil physical-mechanical parameters and earth dam slope stability using stochastic and numerical modeling. Geociencias, 42(3), 387–402. https://doi.org/ 10.5016/geociencias.v42i3.17683

Flores, I., Tristá, J. G., & Haramboure, Y. G. (2020). Estabilidad de taludes durante un desembalse rápido en presas de tierra con suelos parcialmente saturados. Ingeniería y Desarrollo, 38(1), 13–31. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-34612020000100013&lng=en&nrm=iso&tlng=es%0Ahttp://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0122-34612020000100013&lng=en&nrm=iso&tlng=es

Flores, I., Tristá, J. G., & Haramboure, Y. G. (2021). Evaluación de la estabilidad de taludes en presas de tierra empleando Redes Neuronales Artificiales. Revista de La Universidad de Zulia, 32, 261–283. https://doi.org/http://dx.doi.org/10.46925//rdluz.32.17

Fredlund, D., Xing, A., & Huang, S. (1994). Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. Canada Geotechnical Journal, 31, 533–546.

Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31, 533–546.

Fredlund, M., Mckeown, R., Lu, H., & Gitirana, G. (2019). Comparison of 2D and 3D anchor analysis methodologies. 1999, 359–367. https://www.researchgate.net/publication/340438381_COMPARISON_OF_2D_AND_3D_ANCHOR_ANALYSIS_METHODOLOGIES

Ganasan, E., John, A., & Meng, L. (2021). Settlement Prediction Model in Consideration of Static Loading on Soft Clay by Utilising Machine Learning Method. Recent Trends in Civil Engineering and Built Environment, 2(1), 551–560. https://doi.org/https://doi.org/10.30880/rtcebe.2021.02.01.060

Haramboure, Y. G., Flores B. I., & Tristá, J. G. (2021). Efecto de desembalse en la estabilidad de presas de tierra: dos casos de estudio en Cuba. Ingeniería Hidráulica y Ambiental, XLII(1), 42-53.

Available in: https://search.ebscohost.com/login.aspx?direct=true&db=edsdoj&AN=edsdoj.bc970eb6c00a4b9ca277830ee2da395c&lang=es&site=eds-live&scope=site

Jabbar, A., & Muataz, I. (2021). Stability and Seepage of Earth Dams with Toe Filter (Calibrated with artificial neural network). Journal of Engineering Science and Technology, 16(5), 3712–3725

Jasim, F. H., Vahedifard, F., Ragno, E., AghaKouchak, A., & Ellithy, G. (2017). Effects of Climate Change on Fragility Curves of Earthen Levees Subjected to Extreme Precipitations. Geo-Risk, 498–507.

Jong, S. C., Ong, D. E. L., & Oh, E. (2021). State-of-the-art review of geotechnical-driven artificial intelligence techniques in underground soil-structure interaction. Tunnelling and Underground Space Technology, 113. https://doi.org/10.1016/j.tust.2021.103946

Kim, J., Kwon, O.-I., Baek, Y., & Kim, C.-Y. (2014). A Study on the Variation of Ground Safety Factor by Earthworks. The Journal of Engineering Geology, 24(3), 333–341. https://doi.org/10.9720/kseg.2014.3.333

Komasi, M., Mohammadzadeh, A., & Beiranvand, B. (2019). Optimization of horizontal drain dimensions in heterogeneous earth dams using Artificial Neural Network (ANN) (Case study: Marvak dam). Journal of Applied Research in Water and Wastewater, 12, 109-116. https://doi.org/10.22126/arww.2019.3817.1101

Maneta, M., & Shnabel, S. (2003). Aplicación de Redes Neuronales Artificiales para determinar la distribución espacial de la humedad del suelo en una pequeña cuenca de drenaje. Estudios preliminares. Estudios de La Zona No Saturada Del Suelo, VI, 295–304.

Montoya, E. (2018). Metodología para la aplicación de Redes Neuronales Artificales para sistemas de alerta de deslizamientos provocados por lluvias en regiones montañosas. PhD Thesis. Universidad de Brasilia.

Nanehkaran, Y. A., Licai, Z., Chengyong, J., Chen, J., Anwar, S., Azarafza, M., & Derakhshani, R. (2023). Comparative Analysis for Slope Stability by Using Machine Learning Methods. Applied Sciences (Switzerland), 13(3), 1–14. https://doi.org/10.3390/app13031555

Patra, C. R., & Basudhar, P. K. (2003). Generalized solution procedure for automated slope stability analysis using inclined slices. Geotechnical and Geological Engineering, 21(3), 259–281. https://doi.org/10.1023/A:1024923329646

Pinyol, M., Alonso, E. E., & Olivella, S. (2008). Rapid drawdown in slopes and embankments. Water Resources Researh, 44, 1–22. https://doi.org/10.1029/2007WR006525

Pinyol, N., Alonso, E. E., Corominas, J., & Moya, J. (2013). Influencia del desembalse en la estabilidad de una ladera. Caso Real. 37–39. VIII Simposio Nacional sobre Taludes y Laderas Inestables. Barcelona. Available in: https://search.ebscohost.com/login.aspx?direct=true&db=edsair&AN=edsair.dedup.wf.001..57c83103345e083529765aeac339b1f9&lang=es&site=eds-live&scope=site

Riedmiller, M. & Braun, H. (1993). A direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm. IEEE Access, 16, 586-591. https://doi.org/O-7803-0999-5/93/$03

Romer, G., Ayala, L., Chagas, F., & Silva, D. A. (2019). Estudio de Estabilidad de Taludes en Presas de Tierra en Condiciones No Saturadas Cuando Ocurre Descenso Rápido de Nivel de Agua. Geotechnical Engineering in the XXI Century: Lessons Learned and Future Challenges, 1804–1814. https://doi.org/10.3233/STAL190237

Salazar, F., Toledo, M. A., Oñate, E., & Morán, R. (2015). An empirical comparison of machine learning techniques for a dam behaviour modelling. Structural Safety, 59, 118. https://doi.org/https://doi.org/10.1016/j.strusafe.2015.05.001

Santillán, D., Fraile-Ardanuy, J., & Toledo, M. Á. (2014). Predicción de lecturas de aforos de filtraciones de presas bóveda mediante redes neuronales artificiales. Tecnología y Ciencias Del Agua, V(3), 81–96. Available in: https://search.ebscohost.com/login.aspx?direct=true&db=edsair&AN=edsair.doajarticles..987aeb382aafcbb0ba932817dc676ed1&lang=es&site=eds-live&scope=site

Shahin, M. A. (2016). State-of-the-art review of some artificial intelligence applications in pile foundations. Geoscience Frontiers, 7, 33–34. https://doi.org/https://doi.org/10.1016/j. gsf.2014.10.002.

Singh, P., Bardhan, A., Han, F., Samui, P., & Zhang, W. (2023). A critical review of conventional and soft computing methods for slope stability analysis. Modeling Earth Systems and Environment, 9(1), 1–17. https://doi.org/10.1007/s40808-022-01489-1

Toapaxi, J., Hidalgo, X., Valencia, N., & Castro, M. (2015). Bases y Criterios para el Dimensionamiento Hidráulico de Formas Especiales de Saltos en Esquí en Presas. Revista Politécnica, 35(3), 1–6. Available in: https://search.ebscohost.com/login.aspx?direct=true&db=edsair&AN=edsair.doajarticles..898fe082a53ba82ae7c3ec4762a8c503&lang=es&site=eds-live&scope=site

Vahedifard, F., Jasim, F. H., Tracy, F. T., Abdollahi, M., Alborzi, A., & Aghakouchak, A. (2020). Levee Fragility Behavior under Projected Future Flooding in a Warming Climate. Journal of Geotechnical and Geoenvironmental Engineering, 146(12), 1–12. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002399

Wengang, Z., Hanlong, L., Wang, L., Xing, Z., & Yanmei, Z. (2023). Application of Machine Learning in Slope Stability Assessment (Springer (ed.)). https://doi.org/https://doi.org/10.1007/978-981-99-2756-2