Modelo de Redes Neuronales Artificiales para Predecir el Factor de Seguridad en Presas de Tierra Sometidas a Desembalse Rápido
##plugins.themes.bootstrap3.article.main##
Resumen
El desembalse rápido se ha identificado como una de las causas más frecuentes de las fallas en taludes debido a los efectos asociados a la sequía y a los cambios de operación al incorporar hidroeléctricas, los cuales influyen en el nivel de llenado de las presas de tierra. Esta investigación tiene como objetivo fundamental la obtención de modelos predictivos basados en Redes Neuronales Artificiales que devuelvan el factor de seguridad del talud aguas arriba en presas de tierra homogéneas ante el efecto del desembalse rápido. Se definieron tres geometrías y 40 suelos para conformar el terraplén, a partir de los cuales se construyeron modelos numéricos híbridos de flujo de agua transitorio con suelos no saturados, considerando tres velocidades de desembalse. A partir de estos resultados, se construyó una base de datos para desarrollar los modelos predictivos, a través del programa KNIME y un algoritmo basado en Redes Neuronales Artificiales. Se analiza, además, el comportamiento del factor de seguridad en función del tiempo para establecer sus intervalos de recuperación. Los principales resultados muestran que el factor de seguridad mínimo se obtiene entre el 52 % y el 88 % del tiempo total de desembalse. En cuanto a los modelos predictivos, los coeficientes de determinación R2 ajustados fueron superiores al 95 % en todos los casos y los errores se mantuvieron por debajo de 10 %. Se demuestra una alta efectividad en este tipo de herramienta y la validez de su aplicación a problemas geotécnicos.
Descargas
Descargas
Detalles del artículo
Citas
Alfatlawi, T. J. M., Al-Temimi, Y. K., & Alomari, Z. M. (2020). Evaluation of the upstream slope stability of earth dams based on drawdown conditions - Khassa Chai Dam: A case study. IOP Conference Series: Materials Science and Engineering, 671(1). https://doi.org/10.1088/1757-899X/671/1/012072
Alonso, E. E., & Pinyol, N. M. (2016). Numerical analysis of rapid drawdown: Applications in real cases. Water Science and Engineering, 9(3), 175–182. https://doi.org/10.1016/j.wse.2016.11.003
Anting, N. (2022). DATA SCIENCE with KNIME: Data Exploration, Machine Learning and Visualization using CODELESS Visual Programming. In Data science with KNIME.
Aubertin, M., Mbonimpa, M., Bussière, B., & Chapuis, R. P. (2003). A model to predict the water retention curve from basic geotechnical properties. Canadian Geotechnical Journal, 1122, 1104–1122. https://doi.org/10.1139/T03-054
Barredo-Arrieta, A., Díaz-Rodríguez, N., Del, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-López, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial Intelligence ( XAI ): Concepts , taxonomies , opportunities and challenges toward responsible AI. Information Fusion, 58(December 2019), 82–115. https://doi.org/10.1016/j.inffus.2019.12.012
Beiranvand, B., & Komasi, M. (2021). Study of the Arching Ratio in Earth Dam by Comparing the Results of Monitoring with Numerical Analysis (Case Study: Marvak Dam). Iranian Journal of Science and Technology - Transactions of Civil Engineering, 45(2), 1183–1195. https://doi.org/10.1007/s40996-020-00519-1
Bhaskar, P., Puppala, A., & Boluk, B. (2022). Influence of Unsaturated Hydraulic Properties on Transient Seepage and Stability Analysis of an Earthen Dam. Int. J. Geomech, 22(7), 1–12. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002414
Bongiorno, F., Angulo, N., & Belandria, N. (2015). Evaluación del Riesgo en Desprendimiento y Caracterización Geomecánica de los Taludes Rocosos en el Sector Quebrada del Diablo Mérida. Revista Politécnica, 36(3). Available in: https://revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/659
Boushehrian, A. H., Rezaee, A., & Vafamand, A. (2017). Studying the Effect of Horizontal Drains on Stability of Heterogeneous and Homogeneous Earth Dams during Rapid Drawdown Condition. Journal of Structural Engeneering and Geotechnics, 7(1), 31–45.
Bui, D. T., Moayedi, H., Gör, M., Jaafari, A., & Foong, L. K. (2019). Predicting slope stability failure through machine learning paradigms. ISPRS International Journal of Geo-Information, 8(9). https://doi.org/10.3390/ijgi8090395
El-Hazek, A. N., Abdel-Mageed, N., & Hadid, M. (2020). Numerical and experimental modelling of slope stability and seepage water of earthfill dam. Journal of Water and Land Development, 44(I_III), 55–64. https://doi.org/10.24425/jwld.2019.127046.Abstract
Flores, I., Haramboure, Y. G., Días, J., & Tristá, J. G. (2022). Estudio de la estabilidad de taludes ante procesos de desembalse rápido en presas. Ingeniería Hidráulica y Ambiental, XLIII(03), 64–72. Available in: https://search.ebscohost.com/login.aspx?direct=true&db=edsdoj&AN=edsdoj.5af06550472049faafda0b4e8ff949ff&lang=es&site=eds-live&scope=site.
Flores, I., Hernández, F. M., Haramboure, Y., & Tristá, J. (2023). Relationship between soil physical-mechanical parameters and earth dam slope stability using stochastic and numerical modeling. Geociencias, 42(3), 387–402. https://doi.org/ 10.5016/geociencias.v42i3.17683
Flores, I., Tristá, J. G., & Haramboure, Y. G. (2020). Estabilidad de taludes durante un desembalse rápido en presas de tierra con suelos parcialmente saturados. Ingeniería y Desarrollo, 38(1), 13–31. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-34612020000100013&lng=en&nrm=iso&tlng=es%0Ahttp://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0122-34612020000100013&lng=en&nrm=iso&tlng=es
Flores, I., Tristá, J. G., & Haramboure, Y. G. (2021). Evaluación de la estabilidad de taludes en presas de tierra empleando Redes Neuronales Artificiales. Revista de La Universidad de Zulia, 32, 261–283. https://doi.org/http://dx.doi.org/10.46925//rdluz.32.17
Fredlund, D., Xing, A., & Huang, S. (1994). Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. Canada Geotechnical Journal, 31, 533–546.
Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31, 533–546.
Fredlund, M., Mckeown, R., Lu, H., & Gitirana, G. (2019). Comparison of 2D and 3D anchor analysis methodologies. 1999, 359–367. https://www.researchgate.net/publication/340438381_COMPARISON_OF_2D_AND_3D_ANCHOR_ANALYSIS_METHODOLOGIES
Ganasan, E., John, A., & Meng, L. (2021). Settlement Prediction Model in Consideration of Static Loading on Soft Clay by Utilising Machine Learning Method. Recent Trends in Civil Engineering and Built Environment, 2(1), 551–560. https://doi.org/https://doi.org/10.30880/rtcebe.2021.02.01.060
Haramboure, Y. G., Flores B. I., & Tristá, J. G. (2021). Efecto de desembalse en la estabilidad de presas de tierra: dos casos de estudio en Cuba. Ingeniería Hidráulica y Ambiental, XLII(1), 42-53.
Jabbar, A., & Muataz, I. (2021). Stability and Seepage of Earth Dams with Toe Filter (Calibrated with artificial neural network). Journal of Engineering Science and Technology, 16(5), 3712–3725
Jasim, F. H., Vahedifard, F., Ragno, E., AghaKouchak, A., & Ellithy, G. (2017). Effects of Climate Change on Fragility Curves of Earthen Levees Subjected to Extreme Precipitations. Geo-Risk, 498–507.
Jong, S. C., Ong, D. E. L., & Oh, E. (2021). State-of-the-art review of geotechnical-driven artificial intelligence techniques in underground soil-structure interaction. Tunnelling and Underground Space Technology, 113. https://doi.org/10.1016/j.tust.2021.103946
Kim, J., Kwon, O.-I., Baek, Y., & Kim, C.-Y. (2014). A Study on the Variation of Ground Safety Factor by Earthworks. The Journal of Engineering Geology, 24(3), 333–341. https://doi.org/10.9720/kseg.2014.3.333
Komasi, M., Mohammadzadeh, A., & Beiranvand, B. (2019). Optimization of horizontal drain dimensions in heterogeneous earth dams using Artificial Neural Network (ANN) (Case study: Marvak dam). Journal of Applied Research in Water and Wastewater, 12, 109-116. https://doi.org/10.22126/arww.2019.3817.1101
Maneta, M., & Shnabel, S. (2003). Aplicación de Redes Neuronales Artificiales para determinar la distribución espacial de la humedad del suelo en una pequeña cuenca de drenaje. Estudios preliminares. Estudios de La Zona No Saturada Del Suelo, VI, 295–304.
Montoya, E. (2018). Metodología para la aplicación de Redes Neuronales Artificales para sistemas de alerta de deslizamientos provocados por lluvias en regiones montañosas. PhD Thesis. Universidad de Brasilia.
Nanehkaran, Y. A., Licai, Z., Chengyong, J., Chen, J., Anwar, S., Azarafza, M., & Derakhshani, R. (2023). Comparative Analysis for Slope Stability by Using Machine Learning Methods. Applied Sciences (Switzerland), 13(3), 1–14. https://doi.org/10.3390/app13031555
Patra, C. R., & Basudhar, P. K. (2003). Generalized solution procedure for automated slope stability analysis using inclined slices. Geotechnical and Geological Engineering, 21(3), 259–281. https://doi.org/10.1023/A:1024923329646
Pinyol, M., Alonso, E. E., & Olivella, S. (2008). Rapid drawdown in slopes and embankments. Water Resources Researh, 44, 1–22. https://doi.org/10.1029/2007WR006525
Pinyol, N., Alonso, E. E., Corominas, J., & Moya, J. (2013). Influencia del desembalse en la estabilidad de una ladera. Caso Real. 37–39. VIII Simposio Nacional sobre Taludes y Laderas Inestables. Barcelona. Available in: https://search.ebscohost.com/login.aspx?direct=true&db=edsair&AN=edsair.dedup.wf.001..57c83103345e083529765aeac339b1f9&lang=es&site=eds-live&scope=site
Riedmiller, M. & Braun, H. (1993). A direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm. IEEE Access, 16, 586-591. https://doi.org/O-7803-0999-5/93/$03
Romer, G., Ayala, L., Chagas, F., & Silva, D. A. (2019). Estudio de Estabilidad de Taludes en Presas de Tierra en Condiciones No Saturadas Cuando Ocurre Descenso Rápido de Nivel de Agua. Geotechnical Engineering in the XXI Century: Lessons Learned and Future Challenges, 1804–1814. https://doi.org/10.3233/STAL190237
Salazar, F., Toledo, M. A., Oñate, E., & Morán, R. (2015). An empirical comparison of machine learning techniques for a dam behaviour modelling. Structural Safety, 59, 118. https://doi.org/https://doi.org/10.1016/j.strusafe.2015.05.001
Santillán, D., Fraile-Ardanuy, J., & Toledo, M. Á. (2014). Predicción de lecturas de aforos de filtraciones de presas bóveda mediante redes neuronales artificiales. Tecnología y Ciencias Del Agua, V(3), 81–96. Available in: https://search.ebscohost.com/login.aspx?direct=true&db=edsair&AN=edsair.doajarticles..987aeb382aafcbb0ba932817dc676ed1&lang=es&site=eds-live&scope=site
Shahin, M. A. (2016). State-of-the-art review of some artificial intelligence applications in pile foundations. Geoscience Frontiers, 7, 33–34. https://doi.org/https://doi.org/10.1016/j. gsf.2014.10.002.
Singh, P., Bardhan, A., Han, F., Samui, P., & Zhang, W. (2023). A critical review of conventional and soft computing methods for slope stability analysis. Modeling Earth Systems and Environment, 9(1), 1–17. https://doi.org/10.1007/s40808-022-01489-1
Toapaxi, J., Hidalgo, X., Valencia, N., & Castro, M. (2015). Bases y Criterios para el Dimensionamiento Hidráulico de Formas Especiales de Saltos en Esquí en Presas. Revista Politécnica, 35(3), 1–6. Available in: https://search.ebscohost.com/login.aspx?direct=true&db=edsair&AN=edsair.doajarticles..898fe082a53ba82ae7c3ec4762a8c503&lang=es&site=eds-live&scope=site
Vahedifard, F., Jasim, F. H., Tracy, F. T., Abdollahi, M., Alborzi, A., & Aghakouchak, A. (2020). Levee Fragility Behavior under Projected Future Flooding in a Warming Climate. Journal of Geotechnical and Geoenvironmental Engineering, 146(12), 1–12. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002399
Wengang, Z., Hanlong, L., Wang, L., Xing, Z., & Yanmei, Z. (2023). Application of Machine Learning in Slope Stability Assessment (Springer (ed.)). https://doi.org/https://doi.org/10.1007/978-981-99-2756-2